Navier Stokes Fluid Heat Transfer / WCNSFVFluidHeatTransferPhysics

Define the Navier Stokes weakly-compressible energy equation

Equation

This Physics object creates the kernels and boundary conditions to solve the advection-diffusion equation for the fluid temperature. For free flow in a non-porous media:

ρht+(ρhv)(kfTf)Q+α(TfTambient)=0\dfrac{\partial \rho h}{\partial t} + \nabla \cdot (\rho h \mathbf{v}) - \nabla \cdot (k_f \nabla T_f) - Q + \alpha (T_f - T_{ambient}) = 0

For flow in a porous medium:

ϵρht+(ρhvD)(kfTf)Q+α(TfTambient)=0\dfrac{\partial \epsilon \rho h}{\partial t} + \nabla \cdot (\rho h \mathbf{v}_D) - \nabla \cdot (k_f \nabla T_f) - Q + \alpha (T_f - T_{ambient}) = 0

where:

  • hh is the fluid enthalpy, computed from the specific heat cpc_p

  • ρ\rho is the fluid density

  • ϵ\epsilon is the porosity

  • TfT_f is the fluid temperature

  • \mathbf{v} is the advecting velocity (clean flow)

  • \mathbf{v}_D is the advecting superficial velocity (porous media flow)

  • kappafkappa_f the fluid effective thermal conductivity

  • QQ is the source term, corresponding to energy deposited directly in the fluid

  • α\alpha is the ambient convection volumetric heat transfer coefficient

  • TambientT_{ambient} is the ambient temperature

The enthalpy is used in lieu of ρcpT\rho c_p T to be able to model gases with temperature dependent specific heat.

The kernels created for flow in a non-porous medium are:

For flow in a porous medium:

commentnote

Additional details on porous media flow equations can be found on this page.

Automatically defined variables

The WCNSFVFluidHeatTransferPhysics automatically sets up the variables which are necessary for solving the energy transport equation:

For the default names of other variables used in this action, visit this site.

Coupling with other Physics

The heat advection equation can be solved concurrently with the flow equations by combining both the Navier Stokes Fluid Heat Transfer / WCNSFVFluidHeatTransferPhysics and the Navier Stokes Flow / WCNSFVFlowPhysics. The following input performs this coupling for incompressible flow in a 2D channel. No system parameters are passed, so the equations are solved in a fully coupled manner in the same nonlinear system.

[Physics]
  [NavierStokes]
    [Flow]
      [flow]
        compressibility = 'incompressible'

        density = 'rho'
        dynamic_viscosity = 'mu'

        initial_velocity = '${u_inlet} 1e-12 0'
        initial_pressure = 0.0

        inlet_boundaries = 'left'
        momentum_inlet_types = 'fixed-velocity'
        momentum_inlet_function = '${u_inlet} 0'
        wall_boundaries = 'bottom top'
        momentum_wall_types = 'symmetry noslip'

        outlet_boundaries = 'right'
        momentum_outlet_types = 'fixed-pressure-zero-gradient'
        pressure_function = '${p_outlet}'

        mass_advection_interpolation = 'average'
        momentum_advection_interpolation = 'average'
      []
    []

    [FluidHeatTransfer]
      [heat]
        thermal_conductivity = 'k'
        specific_heat = 'cp'

        fluid_temperature_variable = 'T_fluid'
        initial_temperature = '${T_inlet}'
        energy_inlet_types = 'heatflux'
        energy_inlet_functors = '${fparse u_inlet * rho * cp * T_inlet}'

        energy_wall_types = 'heatflux heatflux'
        energy_wall_functors = '0 0'

        ambient_convection_alpha = 'h_cv'
        ambient_temperature = 'T_solid'

        energy_advection_interpolation = 'average'
      []
    []
  []
[]
(contrib/moose/modules/navier_stokes/test/tests/finite_volume/ins/channel-flow/2d-rc-transient-physics.i)

Input Parameters

  • add_energy_equationFalseWhether to add the energy equation. This parameter is not necessary if using the Physics syntax

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to add the energy equation. This parameter is not necessary if using the Physics syntax

  • blockBlocks (subdomains) that this Physics is active on.

    C++ Type:std::vector<SubdomainName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Blocks (subdomains) that this Physics is active on.

  • effective_conductivityTrueWhether the conductivity should be multiplied by porosity, or whether the provided conductivity is an effective conductivity taking porosity effects into account

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether the conductivity should be multiplied by porosity, or whether the provided conductivity is an effective conductivity taking porosity effects into account

  • fluid_temperature_variableT_fluidName of the fluid temperature variable

    Default:T_fluid

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:Name of the fluid temperature variable

  • initial_temperature300The initial temperature, assumed constant everywhere

    Default:300

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:The initial temperature, assumed constant everywhere

  • preconditioningnoneWhich preconditioning to use for this Physics

    Default:none

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:default, none

    Controllable:No

    Description:Which preconditioning to use for this Physics

  • transientsame_as_problemWhether the physics is to be solved as a transient

    Default:same_as_problem

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:true, false, same_as_problem

    Controllable:No

    Description:Whether the physics is to be solved as a transient

  • verboseFalseFlag to facilitate debugging a Physics

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Flag to facilitate debugging a Physics

Optional Parameters

  • active__all__ If specified only the blocks named will be visited and made active

    Default:__all__

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:If specified only the blocks named will be visited and made active

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • define_variablesTrueWhether to define variables if the variables with the specified names do not exist. Note that if the variables are defined externally from the Physics, the initial conditions will not be created in the Physics either.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to define variables if the variables with the specified names do not exist. Note that if the variables are defined externally from the Physics, the initial conditions will not be created in the Physics either.

  • ghost_layers2Number of layers of elements to ghost near process domain boundaries

    Default:2

    C++ Type:unsigned short

    Unit:(no unit assumed)

    Controllable:No

    Description:Number of layers of elements to ghost near process domain boundaries

  • inactiveIf specified blocks matching these identifiers will be skipped.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:If specified blocks matching these identifiers will be skipped.

Advanced Parameters

  • ambient_convection_alphaThe heat exchange coefficients for each block in 'ambient_convection_blocks'.

    C++ Type:std::vector<MooseFunctorName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The heat exchange coefficients for each block in 'ambient_convection_blocks'.

  • ambient_convection_blocksThe blocks where the ambient convection is present.

    C++ Type:std::vector<std::vector<SubdomainName>>

    Unit:(no unit assumed)

    Controllable:No

    Description:The blocks where the ambient convection is present.

  • ambient_temperatureThe ambient temperature for each block in 'ambient_convection_blocks'.

    C++ Type:std::vector<MooseFunctorName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The ambient temperature for each block in 'ambient_convection_blocks'.

Volumetric Heat Convection Parameters

  • coupled_flow_physicsWCNSFVFlowPhysics generating the velocities

    C++ Type:PhysicsName

    Unit:(no unit assumed)

    Controllable:No

    Description:WCNSFVFlowPhysics generating the velocities

  • coupled_turbulence_physicsTurbulence Physics coupled with this Physics

    C++ Type:PhysicsName

    Unit:(no unit assumed)

    Controllable:No

    Description:Turbulence Physics coupled with this Physics

Coupled Physics Parameters

  • energy_advection_interpolationupwindThe numerical scheme to use for interpolating energy/temperature, as an advected quantity, to the face.

    Default:upwind

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:average, upwind, sou, min_mod, vanLeer, quick, skewness-corrected

    Controllable:No

    Description:The numerical scheme to use for interpolating energy/temperature, as an advected quantity, to the face.

  • energy_face_interpolationaverageThe numerical scheme to interpolate the temperature/energy to the face (separate from the advected quantity interpolation).

    Default:average

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:average, skewness-corrected

    Controllable:No

    Description:The numerical scheme to interpolate the temperature/energy to the face (separate from the advected quantity interpolation).

  • energy_scaling1The scaling factor for the energy variable.

    Default:1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:The scaling factor for the energy variable.

  • energy_two_term_bc_expansionTrueIf a two-term Taylor expansion is needed for the determination of the boundary valuesof the temperature/energy.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:If a two-term Taylor expansion is needed for the determination of the boundary valuesof the temperature/energy.

Numerical Scheme Parameters

  • energy_inlet_functorsFunctions for fixed-value boundaries in the energy equation.

    C++ Type:std::vector<MooseFunctorName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Functions for fixed-value boundaries in the energy equation.

  • energy_inlet_typesTypes for the inlet boundaries for the energy equation.

    C++ Type:MultiMooseEnum

    Unit:(no unit assumed)

    Options:fixed-temperature, flux-mass, flux-velocity, heatflux

    Controllable:No

    Description:Types for the inlet boundaries for the energy equation.

Inlet Boundary Conditions Parameters

  • energy_wall_functorsFunctions for Dirichlet/Neumann boundaries in the energy equation.

    C++ Type:std::vector<MooseFunctorName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Functions for Dirichlet/Neumann boundaries in the energy equation.

  • energy_wall_typesTypes for the wall boundaries for the energy equation.

    C++ Type:MultiMooseEnum

    Unit:(no unit assumed)

    Options:fixed-temperature, heatflux, wallfunction

    Controllable:No

    Description:Types for the wall boundaries for the energy equation.

Wall Boundary Conditions Parameters

  • external_heat_sourceThe name of a functor which contains the external heat source for the energy equation. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of a functor which contains the external heat source for the energy equation. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • external_heat_source_coeff1Multiplier for the coupled heat source term.

    Default:1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Multiplier for the coupled heat source term.

Heat Source Parameters

  • initial_from_file_timestepLATESTGives the time step number (or "LATEST") for which to read the Exodus solution

    Default:LATEST

    C++ Type:std::string

    Unit:(no unit assumed)

    Controllable:No

    Description:Gives the time step number (or "LATEST") for which to read the Exodus solution

  • initialize_variables_from_mesh_fileFalseDetermines if the variables that are added by the action are initializedfrom the mesh file (only for Exodus format)

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Determines if the variables that are added by the action are initializedfrom the mesh file (only for Exodus format)

Restart From Exodus Parameters

  • specific_heatcpThe name of the specific heat. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    Default:cp

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the specific heat. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • thermal_conductivityk The name of the fluid thermal conductivity for each block

    Default:k

    C++ Type:std::vector<MooseFunctorName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the fluid thermal conductivity for each block

  • thermal_conductivity_blocksThe blocks where the user wants define different thermal conductivities.

    C++ Type:std::vector<std::vector<SubdomainName>>

    Unit:(no unit assumed)

    Controllable:No

    Description:The blocks where the user wants define different thermal conductivities.

  • use_external_enthalpy_materialFalseTo indicate if the enthalpy material is set up outside of the action.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:To indicate if the enthalpy material is set up outside of the action.

Material Properties Parameters