- distributionsNames of the distributions samples were taken from.
C++ Type:std::vector<DistributionName>
Unit:(no unit assumed)
Controllable:No
Description:Names of the distributions samples were taken from.
- orderMaximum polynomial order.
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:Maximum polynomial order.
- responseReporter value of response results, can be vpp with
/ or sampler column with 'sampler/col_ '. C++ Type:ReporterName
Unit:(no unit assumed)
Controllable:No
Description:Reporter value of response results, can be vpp with
/ or sampler column with 'sampler/col_ '. - samplerSampler used to create predictor and response data.
C++ Type:SamplerName
Unit:(no unit assumed)
Controllable:No
Description:Sampler used to create predictor and response data.
PolynomialChaosTrainer
Computes and evaluates polynomial chaos surrogate model.
The theory and use this object is provided within a discussion of the PolynomialChaos model object.
Input Parameters
- converged_reporterReporter value used to determine if a sample's multiapp solve converged.
C++ Type:ReporterName
Unit:(no unit assumed)
Controllable:No
Description:Reporter value used to determine if a sample's multiapp solve converged.
- cv_n_trials1Number of repeated trials of cross-validation to perform.
Default:1
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:Number of repeated trials of cross-validation to perform.
- cv_seed4294967295Seed used to initialize random number generator for data splitting during cross validation.
Default:4294967295
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:Seed used to initialize random number generator for data splitting during cross validation.
- cv_splits10Number of splits (k) to use in k-fold cross-validation.
Default:10
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:Number of splits (k) to use in k-fold cross-validation.
- cv_surrogateName of Surrogate object used for model cross-validation.
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:Name of Surrogate object used for model cross-validation.
- cv_typenoneCross-validation method to use for dataset. Options are 'none' or 'k_fold'.
Default:none
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Cross-validation method to use for dataset. Options are 'none' or 'k_fold'.
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Unit:(no unit assumed)
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- filenameThe name of the file which will be associated with the saved/loaded data.
C++ Type:FileName
Unit:(no unit assumed)
Controllable:No
Description:The name of the file which will be associated with the saved/loaded data.
- penalty0Ridge regularization penalty factor for OLS regression.
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Ridge regularization penalty factor for OLS regression.
- predictor_colsSampler columns used as the independent random variables, If 'predictors' and 'predictor_cols' are both empty, all sampler columns are used.
C++ Type:std::vector<unsigned int>
Unit:(no unit assumed)
Controllable:No
Description:Sampler columns used as the independent random variables, If 'predictors' and 'predictor_cols' are both empty, all sampler columns are used.
- predictorsReporter values used as the independent random variables, If 'predictors' and 'predictor_cols' are both empty, all sampler columns are used.
C++ Type:std::vector<ReporterName>
Unit:(no unit assumed)
Controllable:No
Description:Reporter values used as the independent random variables, If 'predictors' and 'predictor_cols' are both empty, all sampler columns are used.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- regression_typeautoThe type of regression to perform for finding polynomial coefficents.
Default:auto
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:The type of regression to perform for finding polynomial coefficents.
- skip_unconverged_samplesFalseTrue to skip samples where the multiapp did not converge, 'stochastic_reporter' is required to do this.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:True to skip samples where the multiapp did not converge, 'stochastic_reporter' is required to do this.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Unit:(no unit assumed)
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.