- T_zero_e273.15Temperature at which the specific internal energy is assumed to be zero [K].
Default:273.15
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Temperature at which the specific internal energy is assumed to be zero [K].
- allow_imperfect_jacobiansFalsetrue to allow unimplemented property derivative terms to be set to zero for the AD API
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:true to allow unimplemented property derivative terms to be set to zero for the AD API
- density13824.7(Constant) density
Default:13824.7
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:(Constant) density
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Unit:(no unit assumed)
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
ThermalUCProperties
Uranium Carbide (UC) thermal properties (SI units).
Description
This SolidProperties
object provides thermal properties for Uranium monocarbide as a function of temperature.
All units are given in SI, such that the input temperature is Kelvin, and the output units of the thermal conductivity are W/mK, the output units of the isobaric specific heat capacity are J/kgK, and the output units of the density are kg/m.
Isobaric specific heat is calculated from Agency. (2008) as
This is valid for estimating isobaric specific heat over 298 K T 2838 K
Thermal conductivity is calculated from Vasudevamurthy and Nelson (2022) as:
For 323 K T 923 K
And for 924 K T 2573 K, the thermal conductivity is:
The density is assumed constant. A default value is provided Vasudevamurthy and Nelson (2022) as
Input Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Unit:(no unit assumed)
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
References
- International Atomic Energy Agency.
Thermophysical properties of materials for nuclear engineering : a tutorial and collection of data.
iaea, 2008.
ISBN 9789201065087.[BibTeX]
- Gokul Vasudevamurthy and Andrew T. Nelson.
Uranium carbide properties for advanced fuel modeling – a review.
Journal of Nuclear Materials, 1 2022.
doi:10.1016/j.jnucmat.2021.153145.[BibTeX]