- fieldField to integrate
C++ Type:MooseEnum
Controllable:No
Description:Field to integrate
NekVolumeExtremeValue
Compute the extreme value (max/min) of a field over the NekRS mesh
Description
This postprocessor computes the extreme value (maximum or minimum) of a specified field over the volume of the NekRS mesh. For value_type = max
, this postprocessor computes
where is the value of the postprocessor, is the volume of the NekRS mesh, and is the specified field. For value_type = min
, this postprocessor instead computes
To be clear, this postprocessor is not evaluated on the NekRSMesh mesh mirror, but instead on the mesh actually used for computation in NekRS.
The field is specified with the field
parameter, which may be one of:
pressure
temperature
velocity
(magnitude of velocity)velocity_x
(-component of velocity)velocity_y
(-component of velocity)velocity_z
(-component of velocity)velocity_component
(velocity vector projected onto another vector)scalar01
scalar02
scalar03
unity
Setting field = unity
is equivalent to computing 1, since the extreme value of unity is 1 (unity
is of more use for other postprocessors).
If running NekRS in non-dimensional form (and you have indicated the appropriate nondimensional scales by setting nondimensional = true
for the [Problem]
, then the value of this postprocessor is shown in dimensional units. On the otherhand, NekRS scalars (scalar01, scalar02 or scalar03) are never dimensionalized because their dimensions are problem-dependent.
Example Input Syntax
As an example, the max_T
postprocessor will evaluate the maximum temperature over the volume of the NekRS mesh.
[Postprocessors]
[outlet_T]
type = NekMassFluxWeightedSideAverage
field = temperature
boundary = '3'
[]
[max_T]
type = NekVolumeExtremeValue
field = temperature
[]
[]
(tutorials/pincell_multiphysics/nek.i)Input Parameters
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Options:NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, TRANSFER
Controllable:No
Description:The list of flag(s) indicating when this object should be executed, the available options include NONE, INITIAL, LINEAR, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM.
- meshallNekRS mesh to compute postprocessor on
Default:all
C++ Type:MooseEnum
Options:fluid, solid, all
Controllable:No
Description:NekRS mesh to compute postprocessor on
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
- value_typemaxWhether to give the maximum or minimum extreme value
Default:max
C++ Type:MooseEnum
Options:max, min, average
Controllable:No
Description:Whether to give the maximum or minimum extreme value
- velocity_directionDirection in which to evaluate velocity, for 'field = velocity_component'. For example, velocity_direction = '1 0 0' will get the x-component of velocity.
C++ Type:libMesh::Point
Controllable:No
Description:Direction in which to evaluate velocity, for 'field = velocity_component'. For example, velocity_direction = '1 0 0' will get the x-component of velocity.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (tutorials/fhr_reflector/cht/nek.i)
- (test/tests/conduction/nonidentical_interface/cylinders/nek.i)
- (test/tests/conduction/boundary_and_volume/prism/nek.i)
- (test/tests/nek_standalone/conj_ht/nek.i)
- (test/tests/multiple_nek_apps/two_channels/nek.i)
- (test/tests/conduction/boundary_and_volume/prism/nek_exact.i)
- (test/tests/nek_standalone/channel/nek.i)
- (tutorials/gas_compact_multiphysics/nek.i)
- (tutorials/sfr_7pin/nek.i)
- (tutorials/gas_compact_cht/nek.i)
- (test/tests/cht/nondimensional/nek.i)
- (test/tests/cht/pebble/shift/nek.i)
- (test/tests/conduction/nonidentical_volume/cylinder/nek.i)
- (test/tests/nek_standalone/lowMach/nek.i)
- (test/tests/cht/nondimensional/nek_exact.i)
- (tutorials/pebble_67/nek.i)
- (test/tests/conduction/nonidentical_interface/cylinders/nek_mini.i)
- (test/tests/cht/multi_cht/nek.i)
- (test/tests/postprocessors/nek_volume_extrema/nek.i)
- (test/tests/conduction/nonidentical_interface/cylinders/nek_exact.i)
- (tutorials/nek_stochastic/nek.i)
- (test/tests/nek_errors/invalid_scalar/nek.i)
- (test/tests/cht/sfr_pincell/nek_vpp.i)
- (test/tests/cht/pebble/nek.i)
- (test/tests/conduction/identical_interface/pyramid/nek.i)
- (test/tests/cht/sfr_pincell/nek.i)
- (test/tests/conduction/nonidentical_volume/nondimensional/nek.i)
- (test/tests/nek_errors/invalid_field/nek.i)
- (test/tests/conduction/identical_volume/cube/nek.i)
- (test/tests/nek_standalone/ktauChannel/nek.i)
- (tutorials/pincell_multiphysics/nek.i)
- (tutorials/fhr_reflector/conduction/nek.i)
- (test/tests/deformation/simple-cube/nek.i)
- (tutorials/sfr_7pin/nek_vpp.i)
- (test/tests/conduction/nonidentical_volume/cylinder/nek_exact.i)
(tutorials/pincell_multiphysics/nek.i)
inlet_T = 573.0 # inlet temperature
power = 250 # total power (W)
Re = 500.0 # Reynolds number
pin_diameter = 0.97e-2 # pin outer diameter
pin_pitch = 1.28e-2 # pin pitch
mu = 8.8e-5 # fluid dynamic viscosity
rho = 723.6 # fluid density
Cp = 5512.0 # fluid isobaric specific heat capacity
flow_area = ${fparse pin_pitch * pin_pitch - pi * pin_diameter * pin_diameter / 4.0}
wetted_perimeter = ${fparse pi * pin_diameter}
hydraulic_diameter = ${fparse 4.0 * flow_area / wetted_perimeter}
U_ref = ${fparse Re * mu / rho / hydraulic_diameter}
mdot = ${fparse rho * U_ref * flow_area}
dT = ${fparse power / mdot / Cp}
[Mesh]
type = NekRSMesh
boundary = '1'
scaling = ${hydraulic_diameter}
volume = true
[]
[Problem]
type = NekRSProblem
casename = 'fluid'
nondimensional = true
L_ref = ${hydraulic_diameter}
T_ref = ${inlet_T}
U_ref = ${U_ref}
dT_ref = ${dT}
rho_0 = ${rho}
Cp_0 = ${Cp}
has_heat_source = false
synchronization_interval = parent_app
[]
[Postprocessors]
[outlet_T]
type = NekMassFluxWeightedSideAverage
field = temperature
boundary = '3'
[]
[max_T]
type = NekVolumeExtremeValue
field = temperature
[]
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Outputs]
exodus = true
interval = 10
[]
(tutorials/fhr_reflector/cht/nek.i)
fluid_solid_interface = '1 2 7'
[Mesh]
type = NekRSMesh
boundary = ${fluid_solid_interface}
scaling = 0.006
[]
[Problem]
type = NekRSProblem
casename = 'fluid'
nondimensional = true
U_ref = 0.0575
T_ref = 923.15
dT_ref = 10.0
L_ref = 0.006
rho_0 = 1962.13
Cp_0 = 2416.0
[]
[Executioner]
type = Transient
timestep_tolerance = 1e-9
[./TimeStepper]
type = NekTimeStepper
[../]
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[boundary_flux]
type = NekHeatFluxIntegral
boundary = ${fluid_solid_interface}
[]
[max_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[pressure_in]
type = NekSideAverage
field = pressure
boundary = '5'
[]
[mdot_in]
type = NekMassFluxWeightedSideIntegral
field = unity
boundary = '5'
[]
[mdot_out]
type = NekMassFluxWeightedSideIntegral
field = unity
boundary = '6'
[]
[]
(test/tests/conduction/nonidentical_interface/cylinders/nek.i)
[Problem]
type = NekRSProblem
casename = 'cylinder'
[]
[Mesh]
type = NekRSMesh
order = FIRST
boundary = '2'
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[max_temp_nek]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_temp_nek]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[]
[Outputs]
exodus = true
execute_on = 'final'
[]
(test/tests/conduction/boundary_and_volume/prism/nek.i)
[Problem]
type = NekRSProblem
casename = 'pyramid'
[]
[Mesh]
type = NekRSMesh
volume = true
boundary = '2'
order = FIRST
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[max_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[avg_T_volume]
type = NekVolumeAverage
field = temperature
[]
[heat_flux]
type = NekHeatFluxIntegral
boundary = '2'
[]
[nek_min_1]
type = NekSideExtremeValue
field = temperature
boundary = '3'
value_type = min
[]
[nek_min_2]
type = NekSideExtremeValue
field = temperature
boundary = '4'
value_type = min
[]
[nek_min_3]
type = NekSideExtremeValue
field = temperature
boundary = '5'
value_type = min
[]
[nek_min_4]
type = NekSideExtremeValue
field = temperature
boundary = '6'
value_type = min
[]
[nek_max_1]
type = NekSideExtremeValue
field = temperature
boundary = '3'
[]
[nek_max_2]
type = NekSideExtremeValue
field = temperature
boundary = '4'
[]
[nek_max_3]
type = NekSideExtremeValue
field = temperature
boundary = '5'
[]
[nek_max_4]
type = NekSideExtremeValue
field = temperature
boundary = '6'
[]
[]
[Outputs]
exodus = true
interval = 30
hide = 'flux_integral source_integral'
[]
(test/tests/nek_standalone/conj_ht/nek.i)
[Mesh]
type = NekRSMesh
volume = true
[]
[Problem]
type = NekRSStandaloneProblem
casename = 'conj_ht'
output = 'temperature'
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[Area_BC3_flow]
type = NekSideIntegral
boundary = '3'
field = unity
mesh = 'fluid'
[]
[Area_BC3_all]
type = NekSideIntegral
boundary = '3'
field = unity
mesh = 'all'
[]
[SideAverage_T_BC3_flow]
type = NekSideAverage
boundary = '3'
field = temperature
mesh = 'fluid'
[]
[SideAverage_T_BC3_all]
type = NekSideAverage
boundary = '3'
field = temperature
mesh = 'all'
[]
[HeatFluxIntegral_BC3_flow]
type = NekHeatFluxIntegral
boundary = '3'
mesh = 'fluid'
[]
[HeatFluxIntegral_BC3_all]
type = NekHeatFluxIntegral
boundary = '3'
mesh = 'all'
[]
[MassFlowRate_BC1_flow]
type = NekMassFluxWeightedSideIntegral
boundary = '1'
field = unity
mesh = 'fluid'
[]
[MassFlowRate_BC1_all]
type = NekMassFluxWeightedSideIntegral
boundary = '1'
field = unity
mesh = 'all'
[]
[MflowAvgTemp_BC2_flow]
type = NekMassFluxWeightedSideAverage
boundary = '2'
field = temperature
mesh = 'fluid'
[]
[MflowAvgTemp_BC2_all]
type = NekMassFluxWeightedSideAverage
boundary = '2'
field = temperature
mesh = 'all'
[]
[Reynolds_BC1_flow]
type = ReynoldsNumber
boundary = '1'
L_ref = 0.5
mesh = 'fluid'
[]
[Reynolds_BC1_all]
type = ReynoldsNumber
boundary = '1'
L_ref = 0.5
mesh = 'all'
[]
[Peclet_BC1_flow]
type = PecletNumber
boundary = '1'
L_ref = 0.5
mesh = 'fluid'
[]
[Peclet_BC1_all]
type = PecletNumber
boundary = '1'
L_ref = 0.5
mesh = 'all'
[]
#
# Volume post processors
#
[Vol_flow]
type = NekVolumeIntegral
field = unity
mesh = 'fluid'
[]
[Vol_all]
type = NekVolumeIntegral
field = unity
mesh = 'all'
[]
[maxVol_T_flow]
type = NekVolumeExtremeValue
field = temperature
value_type = max
mesh = 'fluid'
[]
[maxVol_T_all]
type = NekVolumeExtremeValue
field = temperature
value_type = max
mesh = 'all'
[]
[avgVol_T_flow]
type = NekVolumeAverage
field = temperature
mesh = 'fluid'
[]
[avgVol_T_all]
type = NekVolumeAverage
field = temperature
mesh = 'all'
[]
[]
[Outputs]
csv = true
exodus = true
execute_on = final
[]
(test/tests/multiple_nek_apps/two_channels/nek.i)
[Mesh]
type = NekRSMesh
boundary = '1'
volume = true
[]
[Problem]
type = NekRSProblem
casename = 'pin'
write_fld_files = true
# this just helps us skip the heat source transfer into NekRS from MOOSE
# (infrastructure that exists for coupling to neutronics) when we could
# easily just set the constant pin heat source ourselves
has_heat_source = false
[]
[Postprocessors]
[max_T]
type = NekVolumeExtremeValue
field = temperature
[]
[avg_T]
type = NekVolumeAverage
field = temperature
[]
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Outputs]
exodus = true
csv = true
execute_on = 'final'
# just to make the gold files smaller
hide = 'avg_flux flux_integral'
[]
(test/tests/conduction/boundary_and_volume/prism/nek_exact.i)
[Problem]
type = NekRSProblem
casename = 'pyramid_low'
usrwrk_output = '0 1'
usrwrk_output_prefix = 'flx src'
[]
[Mesh]
type = NekRSMesh
volume = true
boundary = '2'
order = FIRST
exact = true
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[max_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[avg_T_volume]
type = NekVolumeAverage
field = temperature
[]
[heat_flux]
type = NekHeatFluxIntegral
boundary = '2'
[]
[nek_min_1]
type = NekSideExtremeValue
field = temperature
boundary = '3'
value_type = min
[]
[nek_min_2]
type = NekSideExtremeValue
field = temperature
boundary = '4'
value_type = min
[]
[nek_min_3]
type = NekSideExtremeValue
field = temperature
boundary = '5'
value_type = min
[]
[nek_min_4]
type = NekSideExtremeValue
field = temperature
boundary = '6'
value_type = min
[]
[nek_max_1]
type = NekSideExtremeValue
field = temperature
boundary = '3'
[]
[nek_max_2]
type = NekSideExtremeValue
field = temperature
boundary = '4'
[]
[nek_max_3]
type = NekSideExtremeValue
field = temperature
boundary = '5'
[]
[nek_max_4]
type = NekSideExtremeValue
field = temperature
boundary = '6'
[]
[]
[Outputs]
exodus = true
interval = 30
hide = 'flux_integral source_integral'
[]
(test/tests/nek_standalone/channel/nek.i)
[Mesh]
type = NekRSMesh
volume = true
[]
[Problem]
type = NekRSStandaloneProblem
casename = 'channel'
output = 'pressure velocity'
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[max_Vx]
type = NekVolumeExtremeValue
field = velocity_x
value_type = max
[]
[max_Vx_output]
type = NodalExtremeValue
variable = vel_x
value_type = max
[]
[max_Vx_diff]
type = DifferencePostprocessor
value1 = max_Vx
value2 = max_Vx_output
[]
[min_Vx]
type = NekVolumeExtremeValue
field = velocity_x
value_type = min
[]
[min_Vx_output]
type = NodalExtremeValue
variable = vel_x
value_type = min
[]
[min_Vx_diff]
type = DifferencePostprocessor
value1 = min_Vx
value2 = min_Vx_output
[]
[max_Vy]
type = NekVolumeExtremeValue
field = velocity_y
value_type = max
[]
[max_Vy_output]
type = NodalExtremeValue
variable = vel_y
value_type = max
[]
[max_Vy_diff]
type = DifferencePostprocessor
value1 = max_Vy
value2 = max_Vy_output
[]
[min_Vy]
type = NekVolumeExtremeValue
field = velocity_y
value_type = min
[]
[min_Vy_output]
type = NodalExtremeValue
variable = vel_y
value_type = min
[]
[max_p]
type = NekVolumeExtremeValue
field = pressure
value_type = max
[]
[max_p_output]
type = NodalExtremeValue
variable = P
value_type = max
[]
[max_p_diff]
type = DifferencePostprocessor
value1 = max_p
value2 = max_p_output
[]
[min_p]
type = NekVolumeExtremeValue
field = pressure
value_type = min
[]
[min_p_output]
type = NodalExtremeValue
variable = P
value_type = min
[]
[min_p_diff]
type = DifferencePostprocessor
value1 = min_p
value2 = min_p_output
[]
[area]
type = NekSideIntegral
field = unity
boundary = '1'
[]
[area_output]
type = AreaPostprocessor
boundary = '1'
[]
[area_diff]
type = DifferencePostprocessor
value1 = area
value2 = area_output
[]
[volume]
type = NekVolumeIntegral
field = unity
[]
[volume_output]
type = VolumePostprocessor
[]
[volume_diff]
type = DifferencePostprocessor
value1 = volume
value2 = volume_output
[]
[max_Vx_side]
type = NekSideExtremeValue
field = velocity_x
value_type = max
boundary = '1'
[]
[max_Vx_side_output]
type = NodalExtremeValue
variable = vel_x
value_type = max
boundary = '1'
[]
[max_Vx_side_diff]
type = DifferencePostprocessor
value1 = max_Vx_side
value2 = max_Vx_side_output
[]
[max_Vy_side]
type = NekSideExtremeValue
field = velocity_y
value_type = max
boundary = '1'
[]
[max_Vy_side_output]
type = NodalExtremeValue
variable = vel_y
value_type = max
boundary = '1'
[]
[max_Vy_side_diff]
type = DifferencePostprocessor
value1 = max_Vy_side
value2 = max_Vy_side_output
[]
[min_Vx_side]
type = NekSideExtremeValue
field = velocity_x
value_type = min
boundary = '1'
[]
[min_Vx_side_output]
type = NodalExtremeValue
variable = vel_x
value_type = min
boundary = '1'
[]
[min_Vx_side_diff]
type = DifferencePostprocessor
value1 = min_Vx_side
value2 = min_Vx_side_output
[]
[min_Vy_side]
type = NekSideExtremeValue
field = velocity_y
value_type = min
boundary = '1'
[]
[min_Vy_side_output]
type = NodalExtremeValue
variable = vel_y
value_type = min
boundary = '1'
[]
[min_Vy_side_diff]
type = DifferencePostprocessor
value1 = min_Vy_side
value2 = min_Vy_side_output
[]
[max_p_side]
type = NekSideExtremeValue
field = pressure
value_type = max
boundary = '1'
[]
[max_p_side_output]
type = NodalExtremeValue
variable = P
value_type = max
boundary = '1'
[]
[min_p_side_diff]
type = DifferencePostprocessor
value1 = min_p_side
value2 = min_p_side_output
[]
[min_p_side]
type = NekSideExtremeValue
field = pressure
value_type = min
boundary = '1'
[]
[min_p_side_output]
type = NodalExtremeValue
variable = P
value_type = min
boundary = '1'
[]
[max_p_side_diff]
type = DifferencePostprocessor
value1 = max_p_side
value2 = max_p_side_output
[]
[avg_p]
type = NekVolumeAverage
field = pressure
[]
[avg_p_output]
type = ElementAverageValue
variable = P
[]
[avg_p_diff]
type = DifferencePostprocessor
value1 = avg_p
value2 = avg_p_output
[]
[avg_Vx]
type = NekVolumeAverage
field = velocity_x
[]
[avg_Vx_output]
type = ElementAverageValue
variable = vel_x
[]
[avg_Vx_diff]
type = DifferencePostprocessor
value1 = avg_Vx
value2 = avg_Vx_output
[]
[avg_Vy]
type = NekVolumeAverage
field = velocity_y
[]
[avg_Vy_output]
type = ElementAverageValue
variable = vel_y
[]
[avg_Vy_diff]
type = DifferencePostprocessor
value1 = avg_Vy
value2 = avg_Vy_output
[]
[avg_Vx_side]
type = NekSideAverage
field = velocity_x
boundary = '1'
[]
[avg_Vx_side_output]
type = SideAverageValue
variable = vel_x
boundary = '1'
[]
[avg_Vx_side_diff]
type = DifferencePostprocessor
value1 = avg_Vx_side
value2 = avg_Vx_side_output
[]
[avg_Vy_side]
type = NekSideAverage
field = velocity_y
boundary = '1'
[]
[avg_Vy_side_output]
type = SideAverageValue
variable = vel_y
boundary = '1'
[]
[avg_Vy_side_diff]
type = DifferencePostprocessor
value1 = avg_Vy_side
value2 = avg_Vy_side_output
[]
[avg_p_side]
type = NekSideAverage
field = pressure
boundary = '1'
[]
[avg_p_side_output]
type = SideAverageValue
variable = P
boundary = '1'
[]
[avg_p_side_diff]
type = DifferencePostprocessor
value1 = avg_p_side
value2 = avg_p_side_output
[]
[]
[Outputs]
csv = true
exodus = true
execute_on = 'final'
hide = 'max_Vx_output min_Vx_output max_Vy_output min_Vy_output max_p_output min_p_output area_output volume_output max_Vx_side max_Vx_side_output max_Vy_side max_Vy_side_output max_p_side max_p_side_output min_Vx_side min_Vx_side_output min_Vy_side min_Vy_side_output min_p_side min_p_side_output avg_p avg_p_output avg_Vx avg_Vx_output avg_Vy avg_Vy_output avg_Vx_side avg_Vx_side_output avg_Vy_side avg_Vy_side_output avg_p_side avg_p_side_output max_Vx max_Vy max_p min_Vx min_Vy min_p area'
[]
(tutorials/gas_compact_multiphysics/nek.i)
# copy-pasta from common_input.i
channel_diameter = 0.016 # diameter of the coolant channels (m)
height = 6.343 # height of the full core (m)
inlet_T = 598.0 # inlet fluid temperature (K)
power = 200e6 # full core power (W)
mdot = 117.3 # fluid mass flowrate (kg/s)
fluid_density = 5.5508 # fluid density (kg/m3)
fluid_Cp = 5189.0 # fluid isobaric specific heat (J/kg/K)
n_bundles = 12 # number of bundles in the full core
n_coolant_channels_per_block = 108 # number of coolant channels per assembly
unit_cell_height = 1.6 # unit cell height - arbitrarily selected
[Mesh]
type = NekRSMesh
boundary = '3'
volume = true
scaling = ${channel_diameter}
[]
[Problem]
type = NekRSProblem
casename = 'ranstube'
has_heat_source = false
n_usrwrk_slots = 2
nondimensional = true
U_ref = ${fparse mdot / (n_bundles * n_coolant_channels_per_block) / fluid_density / (pi * channel_diameter * channel_diameter / 4.0)}
T_ref = ${inlet_T}
dT_ref = ${fparse power / mdot / fluid_Cp * unit_cell_height / height}
L_ref = ${channel_diameter}
rho_0 = ${fluid_density}
Cp_0 = ${fluid_Cp}
synchronization_interval = parent_app
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Outputs]
exodus = true
[screen]
type = Console
hide = 'flux_integral transfer_in'
[]
[csv]
file_base = 'csv/nek'
type = CSV
[]
[]
[Postprocessors]
[inlet_T]
type = NekSideAverage
field = temperature
boundary = '1'
[]
[outlet_T]
type = NekSideAverage
field = temperature
boundary = '2'
[]
[max_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[]
(tutorials/sfr_7pin/nek.i)
[Mesh]
type = NekRSMesh
boundary = '1 2'
[]
[Problem]
type = NekRSProblem
casename = 'sfr_7pin'
synchronization_interval = parent_app
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Outputs]
exodus = true
execute_on = 'final'
[]
[Postprocessors]
[pin_flux_in_nek]
type = NekHeatFluxIntegral
boundary = '1'
[]
[duct_flux_in_nek]
type = NekHeatFluxIntegral
boundary = '2'
[]
[max_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[]
(tutorials/gas_compact_cht/nek.i)
# copy-pasta from common_input.i
channel_diameter = 0.016 # diameter of the coolant channels (m)
height = 6.343 # height of the full core (m)
inlet_T = 598.0 # inlet fluid temperature (K)
power = 200e6 # full core power (W)
mdot = 117.3 # fluid mass flowrate (kg/s)
fluid_density = 5.5508 # fluid density (kg/m3)
fluid_Cp = 5189.0 # fluid isobaric specific heat (J/kg/K)
n_bundles = 12 # number of bundles in the full core
n_coolant_channels_per_block = 108 # number of coolant channels per assembly
unit_cell_height = 1.6 # unit cell height - arbitrarily selected
num_layers_for_plots = 50 # number of layers to average fields over for plotting
[Mesh]
type = NekRSMesh
boundary = '3'
volume = true
scaling = ${channel_diameter}
[]
[Problem]
type = NekRSProblem
casename = 'ranstube'
has_heat_source = false
nondimensional = true
U_ref = ${fparse mdot / (n_bundles * n_coolant_channels_per_block) / fluid_density / (pi * channel_diameter * channel_diameter / 4.0)}
T_ref = ${inlet_T}
dT_ref = ${fparse power / mdot / fluid_Cp * unit_cell_height / height}
L_ref = ${channel_diameter}
rho_0 = ${fluid_density}
Cp_0 = ${fluid_Cp}
synchronization_interval = parent_app
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
min_dt = 1e-10
[]
[]
[Outputs]
exodus = true
[screen]
type = Console
hide = 'boundary_flux inlet_T outlet_T max_T flux_integral transfer_in'
[]
[csv]
file_base = 'csv/nek'
type = CSV
[]
[]
[Postprocessors]
[boundary_flux]
type = NekHeatFluxIntegral
boundary = '3'
[]
[inlet_T]
type = NekSideAverage
field = temperature
boundary = '1'
[]
[outlet_T]
type = NekSideAverage
field = temperature
boundary = '2'
[]
[max_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[]
[UserObjects]
active = '' # simply comment out this line to evaluate these user objects
[layered_bin]
type = LayeredBin
num_layers = ${num_layers_for_plots}
direction = z
[]
[wall_temp]
type = NekBinnedSideAverage
bins = 'layered_bin'
boundary = '3'
field = temperature
map_space_by_qp = true
[]
[bulk_temp]
type = NekBinnedVolumeAverage
bins = 'layered_bin'
field = temperature
map_space_by_qp = true
[]
[]
[VectorPostprocessors]
active = '' # simply comment out this line to evaluate these user objects
[wall]
type = SpatialUserObjectVectorPostprocessor
userobject = wall_temp
[]
[bulk]
type = SpatialUserObjectVectorPostprocessor
userobject = bulk_temp
[]
[]
(test/tests/cht/nondimensional/nek.i)
[Problem]
type = NekRSProblem
casename = 'sfr_pin'
# This input is run in nondimensional form to verify that all the postprocessors
# and data transfers in/out of nekRS are properly dimensionalized.
nondimensional = true
U_ref = 0.0950466
T_ref = 628.15
dT_ref = 50.0
L_ref = 0.908e-2
rho_0 = 834.5
Cp_0 = 1228.0
[]
[Mesh]
type = NekRSMesh
boundary = '1'
# nekRS runs in non-dimensional form, which means that we shrunk the mesh
# from physical units of meters to our characteristic scale of 0.908e-2 m
# (the pin pitch, arbitrarily chosen). That means that we must multiply
# the nekRS mesh by 0.908e-2 to get back in units of meters that BISON is
# running in.
scaling = 0.908e-2
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[synchronization_in]
type = Receiver
[]
# side integral
[area_1]
type = NekSideIntegral
field = unity
boundary = '1'
[]
[pressure_1]
type = NekSideIntegral
field = pressure
boundary = '1'
[]
[temperature_1]
type = NekSideIntegral
field = temperature
boundary = '1'
[]
# side average
[avg_area_1]
type = NekSideAverage
field = unity
boundary = '1'
[]
[avg_pressure_1]
type = NekSideAverage
field = pressure
boundary = '1'
[]
[avg_temperature_1]
type = NekSideAverage
field = temperature
boundary = '1'
[]
# volume integral
[volume]
type = NekVolumeIntegral
field = unity
[]
[pressure_vol]
type = NekVolumeIntegral
field = pressure
[]
[temperature_vol]
type = NekVolumeIntegral
field = temperature
[]
# volume average
[avg_volume]
type = NekVolumeAverage
field = unity
[]
[avg_pressure_vol]
type = NekVolumeAverage
field = pressure
[]
[avg_temperature_vol]
type = NekVolumeAverage
field = temperature
[]
# heat flux integral
[nek_flux]
type = NekHeatFluxIntegral
boundary = '1'
[]
# mass flux weighted integral
[inlet_mdot]
type = NekMassFluxWeightedSideIntegral
field = unity
boundary = '3'
execute_on = initial
[]
[outlet_T]
type = NekMassFluxWeightedSideIntegral
field = temperature
boundary = '4'
[]
[inlet_P]
type = NekMassFluxWeightedSideIntegral
field = pressure
boundary = '4'
[]
# mass flux weighted integral
[inlet_mdot_avg]
type = NekMassFluxWeightedSideAverage
field = unity
boundary = '3'
execute_on = initial
[]
[outlet_T_avg]
type = NekMassFluxWeightedSideAverage
field = temperature
boundary = '4'
[]
[inlet_P_avg]
type = NekMassFluxWeightedSideAverage
field = pressure
boundary = '4'
[]
# extreme value postprocessors - VOLUME
[max_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_T]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[max_p]
type = NekVolumeExtremeValue
field = pressure
value_type = max
[]
[min_p]
type = NekVolumeExtremeValue
field = pressure
value_type = min
[]
[max_1]
type = NekVolumeExtremeValue
field = unity
value_type = max
[]
[min_1]
type = NekVolumeExtremeValue
field = unity
value_type = min
[]
# extreme value postprocessors - SIDE
[max_T_out]
type = NekSideExtremeValue
field = temperature
boundary = '4'
value_type = max
[]
[min_T_out]
type = NekSideExtremeValue
field = temperature
boundary = '4'
value_type = min
[]
[max_p_in]
type = NekSideExtremeValue
field = pressure
boundary = '3'
value_type = max
[]
[min_p_in]
type = NekSideExtremeValue
field = pressure
boundary = '3'
value_type = min
[]
[max_1_in]
type = NekSideExtremeValue
field = unity
boundary = '3'
value_type = max
[]
[min_1_in]
type = NekSideExtremeValue
field = unity
boundary = '3'
value_type = min
[]
[]
[Outputs]
exodus = true
execute_on = 'final'
[screen]
type = Console
hide = 'synchronization_in'
[]
[]
(test/tests/cht/pebble/shift/nek.i)
[Mesh]
type = NekRSMesh
boundary = '1'
scaling = 100.0
[]
[Problem]
type = NekRSProblem
casename = 'onepebble2'
first_reserved_usrwrk_slot = 1
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Outputs]
exodus = true
csv = true
[]
[Postprocessors]
[flux_in_nek]
type = NekHeatFluxIntegral
boundary = '1'
[]
[max_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[]
(test/tests/conduction/nonidentical_volume/cylinder/nek.i)
[Problem]
type = NekRSProblem
casename = 'cylinder'
[]
[Mesh]
type = NekRSMesh
order = SECOND
volume = true
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[max_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[avg_T_volume]
type = NekVolumeAverage
field = temperature
[]
[]
[Outputs]
exodus = true
execute_on = 'final'
[]
(test/tests/nek_standalone/lowMach/nek.i)
[Mesh]
type = NekRSMesh
volume = true
order = SECOND
[]
[Problem]
type = NekRSStandaloneProblem
casename = 'lowMach'
output = 'pressure velocity temperature'
# We omit the non-dimensional settings here in order to just extract the
# non-dimensional solution as-is, without dimensionalizing it.
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
# All the following postprocessors are applying operations both (a) directly to the NekRS
# solution arrays, and (b) to the variables extracted with the 'outputs = ...' syntax.
# Rather than check the actual values of these postprocessors (which might change if the
# NekRS development team changes the nature of their CI tests), we can just check that
# the difference between the Nek-style postprocessors from the MOOSE-style postprocessors
# (acting on the extract solution) are nearly zero. We only check the absolute value of
# the min/max volume values for Vx, temperature, and pressure because those values are printed to
# the screen and offer quick confirmation of any changes that are due to changes in NekRS itself.
[max_Vx]
type = NekVolumeExtremeValue
field = velocity_x
value_type = max
[]
[max_Vx_output]
type = NodalExtremeValue
variable = vel_x
value_type = max
[]
[max_Vx_diff]
type = DifferencePostprocessor
value1 = max_Vx
value2 = max_Vx_output
[]
[min_Vx]
type = NekVolumeExtremeValue
field = velocity_x
value_type = min
[]
[min_Vx_output]
type = NodalExtremeValue
variable = vel_x
value_type = min
[]
[min_Vx_diff]
type = DifferencePostprocessor
value1 = min_Vx
value2 = min_Vx_output
[]
[max_p]
type = NekVolumeExtremeValue
field = pressure
value_type = max
[]
[max_p_output]
type = NodalExtremeValue
variable = P
value_type = max
[]
[max_p_diff]
type = DifferencePostprocessor
value1 = max_p
value2 = max_p_output
[]
[min_p]
type = NekVolumeExtremeValue
field = pressure
value_type = min
[]
[min_p_output]
type = NodalExtremeValue
variable = P
value_type = min
[]
[min_p_diff]
type = DifferencePostprocessor
value1 = min_p
value2 = min_p_output
[]
[max_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[max_T_output]
type = NodalExtremeValue
variable = temp
value_type = max
[]
[max_T_diff]
type = DifferencePostprocessor
value1 = max_T
value2 = max_T_output
[]
[min_T]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[min_T_output]
type = NodalExtremeValue
variable = temp
value_type = min
[]
[min_T_diff]
type = DifferencePostprocessor
value1 = min_T
value2 = min_T_output
[]
[area]
type = NekSideIntegral
field = unity
boundary = '1'
[]
[area_output]
type = AreaPostprocessor
boundary = '1'
[]
[area_diff]
type = DifferencePostprocessor
value1 = area
value2 = area_output
[]
[volume]
type = NekVolumeIntegral
field = unity
[]
[volume_output]
type = VolumePostprocessor
[]
[volume_diff]
type = DifferencePostprocessor
value1 = volume
value2 = volume_output
[]
[max_T_side]
type = NekSideExtremeValue
field = temperature
value_type = max
boundary = '1'
[]
[max_T_side_output]
type = NodalExtremeValue
variable = temp
value_type = max
boundary = '1'
[]
[max_T_side_diff]
type = DifferencePostprocessor
value1 = max_T_side
value2 = max_T_side_output
[]
[min_T_side]
type = NekSideExtremeValue
field = temperature
value_type = min
boundary = '1'
[]
[min_T_side_output]
type = NodalExtremeValue
variable = temp
value_type = min
boundary = '1'
[]
[min_T_side_diff]
type = DifferencePostprocessor
value1 = min_T_side
value2 = min_T_side_output
[]
[max_Vx_side]
type = NekSideExtremeValue
field = velocity_x
value_type = max
boundary = '1'
[]
[max_Vx_side_output]
type = NodalExtremeValue
variable = vel_x
value_type = max
boundary = '1'
[]
[max_Vx_side_diff]
type = DifferencePostprocessor
value1 = max_Vx_side
value2 = max_Vx_side_output
[]
[min_Vx_side]
type = NekSideExtremeValue
field = velocity_x
value_type = min
boundary = '1'
[]
[min_Vx_side_output]
type = NodalExtremeValue
variable = vel_x
value_type = min
boundary = '1'
[]
[min_Vx_side_diff]
type = DifferencePostprocessor
value1 = min_Vx_side
value2 = min_Vx_side_output
[]
[max_p_side]
type = NekSideExtremeValue
field = pressure
value_type = max
boundary = '1'
[]
[max_p_side_output]
type = NodalExtremeValue
variable = P
value_type = max
boundary = '1'
[]
[min_p_side_diff]
type = DifferencePostprocessor
value1 = min_p_side
value2 = min_p_side_output
[]
[min_p_side]
type = NekSideExtremeValue
field = pressure
value_type = min
boundary = '1'
[]
[min_p_side_output]
type = NodalExtremeValue
variable = P
value_type = min
boundary = '1'
[]
[max_p_side_diff]
type = DifferencePostprocessor
value1 = max_p_side
value2 = max_p_side_output
[]
[avg_T]
type = NekVolumeAverage
field = temperature
[]
[avg_T_output]
type = ElementAverageValue
variable = temp
[]
[avg_T_diff]
type = DifferencePostprocessor
value1 = avg_T
value2 = avg_T_output
[]
[avg_Vx]
type = NekVolumeAverage
field = velocity_x
[]
[avg_Vx_output]
type = ElementAverageValue
variable = vel_x
[]
[avg_Vx_diff]
type = DifferencePostprocessor
value1 = avg_Vx
value2 = avg_Vx_output
[]
[avg_T_side]
type = NekSideAverage
field = temperature
boundary = '1'
[]
[avg_T_side_output]
type = SideAverageValue
variable = temp
boundary = '1'
[]
[avg_T_side_diff]
type = DifferencePostprocessor
value1 = avg_T_side
value2 = avg_T_side_output
[]
[avg_Vx_side]
type = NekSideAverage
field = velocity_x
boundary = '1'
[]
[avg_Vx_side_output]
type = SideAverageValue
variable = vel_x
boundary = '1'
[]
[avg_Vx_side_diff]
type = DifferencePostprocessor
value1 = avg_Vx_side
value2 = avg_Vx_side_output
[]
[avg_p_side]
type = NekSideAverage
field = pressure
boundary = '1'
[]
[avg_p_side_output]
type = SideAverageValue
variable = P
boundary = '1'
[]
[avg_p_side_diff]
type = DifferencePostprocessor
value1 = avg_p_side
value2 = avg_p_side_output
[]
[]
[Outputs]
csv = true
exodus = true
execute_on = 'final'
hide = 'max_Vx_output min_Vx_output max_p_output min_p_output area_output volume_output max_Vx_side max_Vx_side_output max_p_side max_p_side_output min_Vx_side min_Vx_side_output min_p_side min_p_side_output avg_Vx avg_Vx_output avg_Vx_side avg_Vx_side_output avg_p_side avg_p_side_output max_T_output min_T_output max_T_side max_T_side_output min_T_side min_T_side_output avg_T avg_T_output avg_T_side avg_T_side_output'
[]
(test/tests/cht/nondimensional/nek_exact.i)
[Problem]
type = NekRSProblem
casename = 'sfr_pin'
# This input is run in nondimensional form to verify that all the postprocessors
# and data transfers in/out of nekRS are properly dimensionalized.
nondimensional = true
U_ref = 0.0950466
T_ref = 628.15
dT_ref = 50.0
L_ref = 0.908e-2
rho_0 = 834.5
Cp_0 = 1228.0
[]
[Mesh]
type = NekRSMesh
boundary = '1'
exact = true
# nekRS runs in non-dimensional form, which means that we shrunk the mesh
# from physical units of meters to our characteristic scale of 0.908e-2 m
# (the pin pitch, arbitrarily chosen). That means that we must multiply
# the nekRS mesh by 0.908e-2 to get back in units of meters that BISON is
# running in.
scaling = 0.908e-2
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
# pressure is not a reliable quantity to compare in a short, few-timestep regression test.
# This line can be uncommented for comparing with the dimensional version.
inactive = 'avg_pressure_1 avg_pressure_vol max_p max_p_in min_p_in pressure_1 pressure_vol'
[synchronization_in]
type = Receiver
[]
# side integral
[area_1]
type = NekSideIntegral
field = unity
boundary = '1'
[]
[pressure_1]
type = NekSideIntegral
field = pressure
boundary = '1'
[]
[temperature_1]
type = NekSideIntegral
field = temperature
boundary = '1'
[]
# side average
[avg_area_1]
type = NekSideAverage
field = unity
boundary = '1'
[]
[avg_pressure_1]
type = NekSideAverage
field = pressure
boundary = '1'
[]
[avg_temperature_1]
type = NekSideAverage
field = temperature
boundary = '1'
[]
# volume integral
[volume]
type = NekVolumeIntegral
field = unity
[]
[pressure_vol]
type = NekVolumeIntegral
field = pressure
[]
[temperature_vol]
type = NekVolumeIntegral
field = temperature
[]
# volume average
[avg_volume]
type = NekVolumeAverage
field = unity
[]
[avg_pressure_vol]
type = NekVolumeAverage
field = pressure
[]
[avg_temperature_vol]
type = NekVolumeAverage
field = temperature
[]
# heat flux integral
[nek_flux]
type = NekHeatFluxIntegral
boundary = '1'
[]
# mass flux weighted integral
[inlet_mdot]
type = NekMassFluxWeightedSideIntegral
field = unity
boundary = '3'
execute_on = initial
[]
[outlet_T]
type = NekMassFluxWeightedSideIntegral
field = temperature
boundary = '4'
[]
[inlet_P]
type = NekMassFluxWeightedSideIntegral
field = pressure
boundary = '4'
[]
# mass flux weighted integral
[inlet_mdot_avg]
type = NekMassFluxWeightedSideAverage
field = unity
boundary = '3'
execute_on = initial
[]
[outlet_T_avg]
type = NekMassFluxWeightedSideAverage
field = temperature
boundary = '4'
[]
[inlet_P_avg]
type = NekMassFluxWeightedSideAverage
field = pressure
boundary = '4'
[]
# extreme value postprocessors - VOLUME
[max_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_T]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[max_p]
type = NekVolumeExtremeValue
field = pressure
value_type = max
[]
[min_p]
type = NekVolumeExtremeValue
field = pressure
value_type = min
[]
[max_1]
type = NekVolumeExtremeValue
field = unity
value_type = max
[]
[min_1]
type = NekVolumeExtremeValue
field = unity
value_type = min
[]
# extreme value postprocessors - SIDE
[max_T_out]
type = NekSideExtremeValue
field = temperature
boundary = '4'
value_type = max
[]
[min_T_out]
type = NekSideExtremeValue
field = temperature
boundary = '4'
value_type = min
[]
[max_p_in]
type = NekSideExtremeValue
field = pressure
boundary = '3'
value_type = max
[]
[min_p_in]
type = NekSideExtremeValue
field = pressure
boundary = '3'
value_type = min
[]
[max_1_in]
type = NekSideExtremeValue
field = unity
boundary = '3'
value_type = max
[]
[min_1_in]
type = NekSideExtremeValue
field = unity
boundary = '3'
value_type = min
[]
[]
[Outputs]
exodus = true
execute_on = 'final'
csv = true
[screen]
type = Console
hide = 'synchronization_in'
[]
[]
(tutorials/pebble_67/nek.i)
Re = 1460.0
dp = 0.06
cylinder_diameter = ${fparse 4.4 * dp}
rho = 3.645
Cp = 3121.0
mu = 2.93e-5
power = 2400.0
inlet_area = ${fparse pi * cylinder_diameter^2 / 4.0}
[Mesh]
type = NekRSMesh
boundary = 4
scaling = ${dp}
[]
[Problem]
type = NekRSProblem
casename = 'pb67'
output = 'velocity'
has_heat_source = false
n_usrwrk_slots = 2
nondimensional = true
L_ref = ${dp}
U_ref = ${fparse Re * mu / rho / dp}
T_ref = 523.0
dT_ref = ${fparse power * dp / Re / inlet_area / mu / Cp}
rho_0 = ${rho}
Cp_0 = ${Cp}
synchronization_interval = parent_app
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Outputs]
exodus = true
interval = 100
[]
[Postprocessors]
[max_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[average_nek_pebble_T]
type = NekSideAverage
boundary = '4'
field = temperature
[]
[]
(test/tests/conduction/nonidentical_interface/cylinders/nek_mini.i)
[Problem]
type = NekRSProblem
casename = 'cylinder'
synchronization_interval = parent_app
[]
[Mesh]
type = NekRSMesh
boundary = '2'
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[max_temp_nek]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_temp_nek]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[]
[Outputs]
exodus = true
execute_on = 'final'
[]
(test/tests/cht/multi_cht/nek.i)
[Mesh]
type = NekRSMesh
volume = true
[]
[Problem]
type = NekRSStandaloneProblem
casename = 'conj_ht'
output = 'temperature pressure scalar01'
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[volume_nek_fluid]
type = NekVolumeIntegral
field = unity
mesh = fluid
[]
[volume_nek_solid]
type = NekVolumeIntegral
field = unity
mesh = solid
[]
[volume_nek_all]
type = NekVolumeIntegral
field = unity
mesh = all
[]
[volume_moose_fluid]
type = VolumePostprocessor
block = '0'
[]
[volume_moose_solid]
type = VolumePostprocessor
block = '1'
[]
[volume_moose_all]
type = VolumePostprocessor
[]
[int_T_nek_fluid]
type = NekVolumeIntegral
field = temperature
mesh = fluid
[]
[int_T_nek_solid]
type = NekVolumeIntegral
field = temperature
mesh = solid
[]
[int_T_nek_all]
type = NekVolumeIntegral
field = temperature
mesh = all
[]
[int_T_moose_fluid]
type = ElementIntegralVariablePostprocessor
variable = temp
block = '0'
[]
[int_T_moose_solid]
type = ElementIntegralVariablePostprocessor
variable = temp
block = '1'
[]
[int_T_moose_all]
type = ElementIntegralVariablePostprocessor
variable = temp
[]
[int_p_nek_fluid]
type = NekVolumeIntegral
field = pressure
mesh = fluid
[]
[int_p_nek_solid]
type = NekVolumeIntegral
field = pressure
mesh = solid
[]
[int_p_nek_all]
type = NekVolumeIntegral
field = pressure
mesh = all
[]
[int_p_moose_fluid]
type = ElementIntegralVariablePostprocessor
variable =P
block = '0'
[]
[int_p_moose_solid]
type = ElementIntegralVariablePostprocessor
variable = P
block = '1'
[]
[int_p_moose_all]
type = ElementIntegralVariablePostprocessor
variable = P
[]
[volume_avg_nek_fluid]
type = NekVolumeAverage
field = unity
mesh = fluid
[]
[volume_avg_nek_solid]
type = NekVolumeAverage
field = unity
mesh = solid
[]
[volume_avg_nek_all]
type = NekVolumeAverage
field = unity
mesh = all
[]
[avg_T_nek_fluid]
type = NekVolumeAverage
field = temperature
mesh = fluid
[]
[avg_T_nek_solid]
type = NekVolumeAverage
field = temperature
mesh = solid
[]
[avg_T_nek_all]
type = NekVolumeAverage
field = temperature
mesh = all
[]
[avg_T_moose_fluid]
type = ElementAverageValue
variable = temp
block = '0'
[]
[avg_T_moose_solid]
type = ElementAverageValue
variable = temp
block = '1'
[]
[avg_T_moose_all]
type = ElementAverageValue
variable = temp
[]
[avg_p_nek_fluid]
type = NekVolumeAverage
field = pressure
mesh = fluid
[]
[avg_p_nek_solid]
type = NekVolumeAverage
field = pressure
mesh = solid
[]
[avg_p_nek_all]
type = NekVolumeAverage
field = pressure
mesh = all
[]
[avg_p_moose_fluid]
type = ElementAverageValue
variable = P
block = '0'
[]
[avg_p_moose_solid]
type = ElementAverageValue
variable = P
block = '1'
[]
[avg_p_moose_all]
type = ElementAverageValue
variable = P
[]
[max_T_nek_fluid]
type = NekVolumeExtremeValue
field = temperature
mesh = fluid
[]
[max_T_nek_solid]
type = NekVolumeExtremeValue
field = temperature
mesh = solid
[]
[max_T_nek_all]
type = NekVolumeExtremeValue
field = temperature
mesh = all
[]
[max_T_moose_fluid]
type = NodalExtremeValue
variable = temp
block = '0'
[]
[max_T_moose_solid]
type = NodalExtremeValue
variable = temp
block = '1'
[]
[max_T_moose_all]
type = NodalExtremeValue
variable = temp
[]
[min_T_nek_fluid]
type = NekVolumeExtremeValue
field = temperature
value_type = min
mesh = fluid
[]
[min_T_nek_solid]
type = NekVolumeExtremeValue
field = temperature
value_type = min
mesh = solid
[]
[min_T_nek_all]
type = NekVolumeExtremeValue
field = temperature
value_type = min
mesh = all
[]
[min_T_moose_fluid]
type = NodalExtremeValue
variable = temp
value_type = min
block = '0'
[]
[min_T_moose_solid]
type = NodalExtremeValue
variable = temp
value_type = min
block = '1'
[]
[min_T_moose_all]
type = NodalExtremeValue
variable = temp
value_type = min
[]
# we include these to show that the extrema postprocessors do properly fetch the true max/min
# when the max/min is in either the solid or the fluid domain
[min_q_nek_fluid]
type = NekVolumeExtremeValue
field = scalar01
value_type = min
mesh = fluid
[]
[min_q_nek_solid]
type = NekVolumeExtremeValue
field = scalar01
value_type = min
mesh = solid
[]
[min_q_nek_all]
type = NekVolumeExtremeValue
field = scalar01
value_type = min
mesh = all
[]
[min_q_moose_fluid]
type = NodalExtremeValue
variable = scalar01
value_type = min
block = '0'
[]
[min_q_moose_solid]
type = NodalExtremeValue
variable = scalar01
value_type = min
block = '1'
[]
[min_q_moose_all]
type = NodalExtremeValue
variable = scalar01
value_type = min
[]
[]
[Outputs]
csv = true
exodus = true
[]
(test/tests/postprocessors/nek_volume_extrema/nek.i)
[Problem]
type = NekRSProblem
casename = 'pyramid'
[]
[Mesh]
type = NekRSMesh
boundary = '1 2 3 4 5 6 7 8'
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Outputs]
[out]
type = CSV
hide = 'flux_integral'
execute_on = 'final'
[]
[]
[Postprocessors]
[max_temp]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_temp]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[max_p]
type = NekVolumeExtremeValue
field = pressure
value_type = max
[]
[min_p]
type = NekVolumeExtremeValue
field = pressure
value_type = min
[]
[max_velocity]
type = NekVolumeExtremeValue
field = velocity
value_type = max
[]
[min_velocity]
type = NekVolumeExtremeValue
field = velocity
value_type = min
[]
[max_x_velocity]
type = NekVolumeExtremeValue
field = velocity_x
value_type = max
[]
[min_x_velocity]
type = NekVolumeExtremeValue
field = velocity_x
value_type = min
[]
[max_y_velocity]
type = NekVolumeExtremeValue
field = velocity_y
value_type = max
[]
[min_y_velocity]
type = NekVolumeExtremeValue
field = velocity_y
value_type = min
[]
[max_z_velocity]
type = NekVolumeExtremeValue
field = velocity_z
value_type = max
[]
[min_z_velocity]
type = NekVolumeExtremeValue
field = velocity_z
value_type = min
[]
[]
(test/tests/conduction/nonidentical_interface/cylinders/nek_exact.i)
[Problem]
type = NekRSProblem
casename = 'cylinder'
[]
[Mesh]
type = NekRSMesh
order = FIRST
exact = true
boundary = '2'
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[max_temp_nek]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_temp_nek]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[]
[Outputs]
exodus = true
execute_on = 'final'
[]
(tutorials/nek_stochastic/nek.i)
[Mesh]
type = NekRSMesh
boundary = '5'
[]
[Problem]
type = NekRSProblem
casename = 'channel'
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[UserObjects]
[k]
type = NekScalarValue
[]
[]
[Postprocessors]
[max_temp]
type = NekVolumeExtremeValue
field = temperature
[]
[k_from_stm] # this will just print to the screen the value of k received
type = NekScalarValuePostprocessor
userobject = k
[]
[expect_max_T]
type = ParsedPostprocessor
function = '1000.0 / k_from_stm + 500.0'
pp_names = k_from_stm
[]
[]
[Outputs]
csv = true
hide = 'flux_integral'
[]
[Controls]
[stm]
type = SamplerReceiver
[]
[]
(test/tests/nek_errors/invalid_scalar/nek.i)
[Problem]
type = NekRSStandaloneProblem
casename = 'pyramid'
[]
[Mesh]
type = NekRSMesh
volume = true
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[max_S]
type = NekVolumeExtremeValue
[]
[]
(test/tests/cht/sfr_pincell/nek_vpp.i)
[Problem]
type = NekRSProblem
casename = 'sfr_pin'
conserve_flux_by_sideset = true
# we only technically need one scratch space slot for this problem,
# so we can skip allocating extra
n_usrwrk_slots = 1
[]
[Mesh]
type = NekRSMesh
boundary = '1'
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[nek_flux]
type = NekHeatFluxIntegral
boundary = '1'
[]
[average_inlet_T]
type = NekSideAverage
field = temperature
boundary = '3'
execute_on = initial
[]
[average_outlet_T]
type = NekSideAverage
field = temperature
boundary = '4'
[]
[dT]
type = DifferencePostprocessor
value1 = average_outlet_T
value2 = average_inlet_T
[]
[inlet_mdot]
type = NekMassFluxWeightedSideIntegral
field = unity
boundary = '3'
execute_on = initial
[]
# postprocessors for comparing against non-dimensional version in ../nondimensional
# --> uncomment in order to get the reference values that the nondimensional boundary coupling
# was verified against
#
# # side integral
# [area_1]
# type = NekSideIntegral
# field = unity
# boundary = '1'
# []
# [pressure_1]
# type = NekSideIntegral
# field = pressure
# boundary = '1'
# []
# [temperature_1]
# type = NekSideIntegral
# field = temperature
# boundary = '1'
# []
# # side average
# [avg_area_1]
# type = NekSideAverage
# field = unity
# boundary = '1'
# []
# [avg_pressure_1]
# type = NekSideAverage
# field = pressure
# boundary = '1'
# []
# [avg_temperature_1]
# type = NekSideAverage
# field = temperature
# boundary = '1'
# []
# # volume integral
# [volume]
# type = NekVolumeIntegral
# field = unity
# []
# [pressure_vol]
# type = NekVolumeIntegral
# field = pressure
# []
# [temperature_vol]
# type = NekVolumeIntegral
# field = temperature
# []
# # volume average
# [avg_volume]
# type = NekVolumeAverage
# field = unity
# []
# [avg_pressure_vol]
# type = NekVolumeAverage
# field = pressure
# []
# [avg_temperature_vol]
# type = NekVolumeAverage
# field = temperature
# []
# # heat flux integral
# [nek_flux]
# type = NekHeatFluxIntegral
# boundary = '1'
# []
# # mass flux weighted integral
# [inlet_mdot]
# type = NekMassFluxWeightedSideIntegral
# field = unity
# boundary = '3'
# execute_on = initial
# []
# [outlet_T]
# type = NekMassFluxWeightedSideIntegral
# field = temperature
# boundary = '4'
# []
# [inlet_P]
# type = NekMassFluxWeightedSideIntegral
# field = pressure
# boundary = '4'
# []
# # mass flux weighted integral
# [inlet_mdot_avg]
# type = NekMassFluxWeightedSideAverage
# field = unity
# boundary = '3'
# execute_on = initial
# []
# [outlet_T_avg]
# type = NekMassFluxWeightedSideAverage
# field = temperature
# boundary = '4'
# []
# [inlet_P_avg]
# type = NekMassFluxWeightedSideAverage
# field = pressure
# boundary = '4'
# []
# # extreme value postprocessors - VOLUME
# [max_T]
# type = NekVolumeExtremeValue
# field = temperature
# value_type = max
# []
# [min_T]
# type = NekVolumeExtremeValue
# field = temperature
# value_type = min
# []
# [max_p]
# type = NekVolumeExtremeValue
# field = pressure
# value_type = max
# []
# [min_p]
# type = NekVolumeExtremeValue
# field = pressure
# value_type = min
# []
# [max_1]
# type = NekVolumeExtremeValue
# field = unity
# value_type = max
# []
# [min_1]
# type = NekVolumeExtremeValue
# field = unity
# value_type = min
# []
# # extreme value postprocessors - SIDE
# [max_T_out]
# type = NekSideExtremeValue
# field = temperature
# boundary = '4'
# value_type = max
# []
# [min_T_out]
# type = NekSideExtremeValue
# field = temperature
# boundary = '4'
# value_type = min
# []
# [max_p_in]
# type = NekSideExtremeValue
# field = pressure
# boundary = '3'
# value_type = max
# []
# [min_p_in]
# type = NekSideExtremeValue
# field = pressure
# boundary = '3'
# value_type = min
# []
# [max_1_in]
# type = NekSideExtremeValue
# field = unity
# boundary = '3'
# value_type = max
# []
# [min_1_in]
# type = NekSideExtremeValue
# field = unity
# boundary = '3'
# value_type = min
# []
[]
[Outputs]
exodus = true
execute_on = 'final'
csv = true
[screen]
type = Console
hide = 'average_inlet_T average_outlet_T'
[]
[]
(test/tests/cht/pebble/nek.i)
[Mesh]
type = NekRSMesh
boundary = '1'
# nekRS solves with a length scale of meters, but nek_master.i is currently solving
# in terms of centimeters. Therefore, just for the sake of data transfers, we need to
# scale NekRSMesh to centimeters.
scaling = 100.0
[]
[Problem]
type = NekRSProblem
casename = 'onepebble2'
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Outputs]
exodus = true
[]
[Postprocessors]
# This is the heat flux in the nekRS solution, i.e. it is not an integral
# of nrs->usrwrk, instead this is directly an integral of k*grad(T)*hat(n).
# So this should closely match 'flux_integral'
[flux_in_nek]
type = NekHeatFluxIntegral
boundary = '1'
[]
[max_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[]
(test/tests/conduction/identical_interface/pyramid/nek.i)
[Problem]
type = NekRSProblem
casename = 'pyramid'
[]
[Mesh]
type = NekRSMesh
boundary = '2'
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[max_temp_nek]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_temp_nek]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[heat_flux]
type = NekHeatFluxIntegral
boundary = '2'
[]
[]
[Outputs]
exodus = true
execute_on = 'final'
[]
(test/tests/cht/sfr_pincell/nek.i)
[Problem]
type = NekRSProblem
casename = 'sfr_pin'
synchronization_interval = parent_app
# we only technically need one scratch space slot for this problem,
# so we can skip allocating extra
n_usrwrk_slots = 1
[]
[Mesh]
type = NekRSMesh
boundary = '1'
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[nek_flux]
type = NekHeatFluxIntegral
boundary = '1'
[]
[average_inlet_T]
type = NekSideAverage
field = temperature
boundary = '3'
execute_on = initial
[]
[average_outlet_T]
type = NekSideAverage
field = temperature
boundary = '4'
[]
[dT]
type = DifferencePostprocessor
value1 = average_outlet_T
value2 = average_inlet_T
[]
[inlet_mdot]
type = NekMassFluxWeightedSideIntegral
field = unity
boundary = '3'
execute_on = initial
[]
# postprocessors for comparing against non-dimensional version in ../nondimensional
# --> uncomment in order to get the reference values that the nondimensional boundary coupling
# was verified against
#
# # side integral
# [area_1]
# type = NekSideIntegral
# field = unity
# boundary = '1'
# []
# [pressure_1]
# type = NekSideIntegral
# field = pressure
# boundary = '1'
# []
# [temperature_1]
# type = NekSideIntegral
# field = temperature
# boundary = '1'
# []
# # side average
# [avg_area_1]
# type = NekSideAverage
# field = unity
# boundary = '1'
# []
# [avg_pressure_1]
# type = NekSideAverage
# field = pressure
# boundary = '1'
# []
# [avg_temperature_1]
# type = NekSideAverage
# field = temperature
# boundary = '1'
# []
# # volume integral
# [volume]
# type = NekVolumeIntegral
# field = unity
# []
# [pressure_vol]
# type = NekVolumeIntegral
# field = pressure
# []
# [temperature_vol]
# type = NekVolumeIntegral
# field = temperature
# []
# # volume average
# [avg_volume]
# type = NekVolumeAverage
# field = unity
# []
# [avg_pressure_vol]
# type = NekVolumeAverage
# field = pressure
# []
# [avg_temperature_vol]
# type = NekVolumeAverage
# field = temperature
# []
# # heat flux integral
# [nek_flux]
# type = NekHeatFluxIntegral
# boundary = '1'
# []
# # mass flux weighted integral
# [inlet_mdot]
# type = NekMassFluxWeightedSideIntegral
# field = unity
# boundary = '3'
# execute_on = initial
# []
# [outlet_T]
# type = NekMassFluxWeightedSideIntegral
# field = temperature
# boundary = '4'
# []
# [inlet_P]
# type = NekMassFluxWeightedSideIntegral
# field = pressure
# boundary = '4'
# []
# # mass flux weighted integral
# [inlet_mdot_avg]
# type = NekMassFluxWeightedSideAverage
# field = unity
# boundary = '3'
# execute_on = initial
# []
# [outlet_T_avg]
# type = NekMassFluxWeightedSideAverage
# field = temperature
# boundary = '4'
# []
# [inlet_P_avg]
# type = NekMassFluxWeightedSideAverage
# field = pressure
# boundary = '4'
# []
# # extreme value postprocessors - VOLUME
# [max_T]
# type = NekVolumeExtremeValue
# field = temperature
# value_type = max
# []
# [min_T]
# type = NekVolumeExtremeValue
# field = temperature
# value_type = min
# []
# [max_p]
# type = NekVolumeExtremeValue
# field = pressure
# value_type = max
# []
# [min_p]
# type = NekVolumeExtremeValue
# field = pressure
# value_type = min
# []
# [max_1]
# type = NekVolumeExtremeValue
# field = unity
# value_type = max
# []
# [min_1]
# type = NekVolumeExtremeValue
# field = unity
# value_type = min
# []
# # extreme value postprocessors - SIDE
# [max_T_out]
# type = NekSideExtremeValue
# field = temperature
# boundary = '4'
# value_type = max
# []
# [min_T_out]
# type = NekSideExtremeValue
# field = temperature
# boundary = '4'
# value_type = min
# []
# [max_p_in]
# type = NekSideExtremeValue
# field = pressure
# boundary = '3'
# value_type = max
# []
# [min_p_in]
# type = NekSideExtremeValue
# field = pressure
# boundary = '3'
# value_type = min
# []
# [max_1_in]
# type = NekSideExtremeValue
# field = unity
# boundary = '3'
# value_type = max
# []
# [min_1_in]
# type = NekSideExtremeValue
# field = unity
# boundary = '3'
# value_type = min
# []
[]
[Outputs]
exodus = true
execute_on = 'final'
csv = true
[screen]
type = Console
hide = 'average_inlet_T average_outlet_T transfer_in'
[]
[]
(test/tests/conduction/nonidentical_volume/nondimensional/nek.i)
[Problem]
type = NekRSProblem
casename = 'cylinder'
nondimensional = true
T_ref = 500.0
dT_ref = 50.0
rho_0 = 5.0
Cp_0 = 6.0
L_ref = 0.5
U_ref = 1.0
[]
[Mesh]
type = NekRSMesh
volume = true
# change to SECOND to exactly match the verification case in ../cylinder; we use
# FIRST here just to reduce the size of the gold file
order = FIRST
# nekRS runs in nondimensional form, so we need to adjust the mesh (in nondimensional
# coordinates) to the dimensional form expected by MOOSE
scaling = 0.5
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[max_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_T]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[avg_T_volume]
type = NekVolumeAverage
field = temperature
[]
[T_volume]
type = NekVolumeIntegral
field = temperature
[]
[]
[Outputs]
exodus = true
execute_on = 'final'
# we can infer that these variables dont change by ensuring that 'temp' does not change,
# since these other two variables are boundary conditions and source terms for the energy equation
hide = 'heat_source'
[]
(test/tests/nek_errors/invalid_field/nek.i)
[Problem]
type = NekRSStandaloneProblem
casename = 'pyramid'
[]
[Mesh]
type = NekRSMesh
volume = true
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[max_T]
type = NekVolumeExtremeValue
field = temperature
[]
[]
(test/tests/conduction/identical_volume/cube/nek.i)
[Problem]
type = NekRSProblem
casename = 'cube'
# we only technically need two scratch space slots for this problem,
# (the first is reserved for heat flux, but ultimately not used in this
# volume-only problem, while the second is reserved for the volumetric heat
# source, which is actually used),
# so we can skip allocating extra
n_usrwrk_slots = 2
[]
[Mesh]
type = NekRSMesh
order = SECOND
volume = true
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[flux_out]
type = NekHeatFluxIntegral
boundary = '1 2 3 4 5 6'
[]
[max_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[avg_T_volume]
type = NekVolumeIntegral
field = temperature
[]
[avg_T_back]
type = NekSideAverage
field = temperature
boundary = '6'
[]
[]
[Outputs]
exodus = true
execute_on = 'final'
# for this tests purposes, we only want to check temperature. This keeps the gold file smaller
hide = 'heat_source'
[]
(test/tests/nek_standalone/ktauChannel/nek.i)
[Mesh]
type = NekRSMesh
volume = true
[]
[Problem]
type = NekRSStandaloneProblem
casename = 'channel'
output = 'pressure velocity temperature'
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[max_T]
type = NekVolumeExtremeValue
field = temperature
[]
[T_at_point]
type = PointValue
variable = temp
point = '4.0 -0.5 0.0'
[]
[pct_change]
type = PercentChangePostprocessor
postprocessor = max_T
[]
[]
[UserObjects]
[layered_average]
type = LayeredAverage
direction = x
variable = P
num_layers = 4
[]
[]
[AuxVariables]
[layered_p]
family = MONOMIAL
order = CONSTANT
[]
[]
[AuxKernels]
[layered_p]
type = SpatialUserObjectAux
variable = layered_p
user_object = layered_average
[]
[]
(tutorials/pincell_multiphysics/nek.i)
inlet_T = 573.0 # inlet temperature
power = 250 # total power (W)
Re = 500.0 # Reynolds number
pin_diameter = 0.97e-2 # pin outer diameter
pin_pitch = 1.28e-2 # pin pitch
mu = 8.8e-5 # fluid dynamic viscosity
rho = 723.6 # fluid density
Cp = 5512.0 # fluid isobaric specific heat capacity
flow_area = ${fparse pin_pitch * pin_pitch - pi * pin_diameter * pin_diameter / 4.0}
wetted_perimeter = ${fparse pi * pin_diameter}
hydraulic_diameter = ${fparse 4.0 * flow_area / wetted_perimeter}
U_ref = ${fparse Re * mu / rho / hydraulic_diameter}
mdot = ${fparse rho * U_ref * flow_area}
dT = ${fparse power / mdot / Cp}
[Mesh]
type = NekRSMesh
boundary = '1'
scaling = ${hydraulic_diameter}
volume = true
[]
[Problem]
type = NekRSProblem
casename = 'fluid'
nondimensional = true
L_ref = ${hydraulic_diameter}
T_ref = ${inlet_T}
U_ref = ${U_ref}
dT_ref = ${dT}
rho_0 = ${rho}
Cp_0 = ${Cp}
has_heat_source = false
synchronization_interval = parent_app
[]
[Postprocessors]
[outlet_T]
type = NekMassFluxWeightedSideAverage
field = temperature
boundary = '3'
[]
[max_T]
type = NekVolumeExtremeValue
field = temperature
[]
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Outputs]
exodus = true
interval = 10
[]
(tutorials/fhr_reflector/conduction/nek.i)
fluid_solid_interface = '1 2 7'
[Mesh]
type = NekRSMesh
boundary = ${fluid_solid_interface}
scaling = 0.006
[]
[Problem]
type = NekRSProblem
casename = 'fluid'
nondimensional = true
U_ref = 0.0575
T_ref = 923.15
dT_ref = 10.0
L_ref = 0.006
rho_0 = 1962.13
Cp_0 = 2416.0
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Outputs]
exodus = true
[]
[Postprocessors]
[boundary_flux]
type = NekHeatFluxIntegral
boundary = ${fluid_solid_interface}
[]
[max_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[]
(test/tests/deformation/simple-cube/nek.i)
[Mesh]
type = NekRSMesh
order = SECOND
volume = true
parallel_type = replicated
displacements = 'disp_x disp_y disp_z'
[]
[Problem]
type = NekRSProblem
casename = 'nekbox'
synchronization_interval = parent_app
[]
[AuxVariables]
[temp_ansol]
order = SECOND
[]
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[integral]
type = ElementL2Difference
variable = temp
other_variable = temp_ansol
execute_on = timestep_end
[]
[max_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
execute_on = timestep_end
[]
[min_T]
type = NekVolumeExtremeValue
field = temperature
value_type = min
execute_on = timestep_end
[]
[]
[Outputs]
exodus = true
execute_on = 'final'
# uncomment the temp_ansol to see that the solution matches very well
hide = 'source_integral transfer_in heat_source temp_ansol'
[]
(tutorials/sfr_7pin/nek_vpp.i)
[Mesh]
type = NekRSMesh
boundary = '1 2'
[]
[Problem]
type = NekRSProblem
casename = 'sfr_7pin'
conserve_flux_by_sideset = true
synchronization_interval = parent_app
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Outputs]
exodus = true
execute_on = 'final'
[]
[Postprocessors]
[pin_flux_in_nek]
type = NekHeatFluxIntegral
boundary = '1'
[]
[duct_flux_in_nek]
type = NekHeatFluxIntegral
boundary = '2'
[]
[max_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[min_nek_T]
type = NekVolumeExtremeValue
field = temperature
value_type = min
[]
[]
(test/tests/conduction/nonidentical_volume/cylinder/nek_exact.i)
[Problem]
type = NekRSProblem
casename = 'cylinder_low'
usrwrk_output = '1'
usrwrk_output_prefix = 'src'
[]
[Mesh]
type = NekRSMesh
volume = true
exact = true
[]
[Executioner]
type = Transient
[TimeStepper]
type = NekTimeStepper
[]
[]
[Postprocessors]
[max_T]
type = NekVolumeExtremeValue
field = temperature
value_type = max
[]
[avg_T_volume]
type = NekVolumeAverage
field = temperature
[]
[point]
type = PointValue
variable = temp
point = '0.5 0.0 0.0 '
[]
[]
[Outputs]
exodus = true
execute_on = 'final'
csv = true
[]