NavierStokesHDGKernel

This class implements the steady incompressible Navier-Stokes equations. These include the conservation of mass:

u=0\nabla \cdot \vec{u} = 0(1)

where u\vec{u} is the velocity and conservation of momentum:

(ρuu)(μu)+p=0\nabla \cdot \left(\rho \vec{u} \otimes \vec{u}\right) - \nabla \cdot \left(\mu \nabla\vec{u}\right) + \nabla p = 0(2)

where ρ\rho is the density, μ\mu is the dynamic viscosity and pp is the pressure. This class uses the hybridization laid out in (Nguyen et al., 2011). Note that, as shown in the reference, the pressure field is integrated by parts which has consequences for boundary conditions on momentum flux boundaries.

Input Parameters

  • face_uThe x-component of the face velocity

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The x-component of the face velocity

  • face_vThe y-component of the face velocity

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The y-component of the face velocity

  • grad_uThe gradient of the x-component of velocity

    C++ Type:AuxVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The gradient of the x-component of velocity

  • grad_vThe gradient of the y-component of velocity

    C++ Type:AuxVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The gradient of the y-component of velocity

  • muThe dynamic viscosity

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:The dynamic viscosity

  • pressureThe pressure variable.

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The pressure variable.

  • rhoThe density

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:The density

  • uThe x-component of velocity

    C++ Type:AuxVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The x-component of velocity

  • vThe y-component of velocity

    C++ Type:AuxVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The y-component of velocity

  • variableThe name of the variable that this residual object operates on

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the variable that this residual object operates on

Required Parameters

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • body_force_x0Body force for the momentum equation in the x-direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    Default:0

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:Body force for the momentum equation in the x-direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • body_force_y0Body force for the momentum equation in the y-direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    Default:0

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:Body force for the momentum equation in the y-direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • body_force_z0Body force for the momentum equation in the z-direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    Default:0

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:Body force for the momentum equation in the z-direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • displacementsThe displacements

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The displacements

  • enclosure_lmFor enclosed problems like the lid driven cavity this variable can be provided to remove the pressure nullspace

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:For enclosed problems like the lid driven cavity this variable can be provided to remove the pressure nullspace

  • face_wThe z-component of the face velocity

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The z-component of the face velocity

  • grad_wThe gradient of the z-component of velocity

    C++ Type:AuxVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The gradient of the z-component of velocity

  • pressure_mms_forcing_function0A forcing function for the pressure (mass) equation for conducting MMS studies. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    Default:0

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:A forcing function for the pressure (mass) equation for conducting MMS studies. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • tau1The stabilization coefficient required for discontinuous Galerkin schemes. This may be set to 0 for a mixed method with Raviart-Thomas.

    Default:1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:The stabilization coefficient required for discontinuous Galerkin schemes. This may be set to 0 for a mixed method with Raviart-Thomas.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

  • wThe z-component of velocity

    C++ Type:AuxVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The z-component of velocity

Optional Parameters

  • absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution

    C++ Type:std::vector<TagName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystemThe tag for the matrices this Kernel should fill

    Default:system

    C++ Type:MultiMooseEnum

    Unit:(no unit assumed)

    Options:nontime, system

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsnontimeThe tag for the vectors this Kernel should fill

    Default:nontime

    C++ Type:MultiMooseEnum

    Unit:(no unit assumed)

    Options:nontime, time

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Tagging Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Unit:(no unit assumed)

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

References

  1. Ngoc Cuong Nguyen, Jaume Peraire, and Bernardo Cockburn. An implicit high-order hybridizable discontinuous galerkin method for the incompressible navier–stokes equations. Journal of Computational Physics, 230(4):1147–1170, 2011.[BibTeX]