INSFVMeshAdvection

As outlined in (Maury, 1996), when converting a time derivative term in the reference frame to a time derivative term in the arbitrary Lagrangian-Eulerian (ALE) frame, the following equation should be used

ϕt=ϕτtcτϕτ \frac{\partial\phi}{\partial t} = \frac{\partial \phi_{\tau}}{\partial t} - \vec{c}_{\tau} \nabla\phi_{\tau}(1)

where ϕ\phi is an arbitrary quantity we are taking the time derivative of, τ\tau denotes the ALE frame at a given time point, and c\vec{c} denotes the mesh velocity or rate of change of coordinates in the ALE frame; this is equivalent to d/t\partial\vec{d}/\partial t, e.g. the partial derivative of the displacement field with respect to time on the reference mesh.

In a Navier-Stokes setting, we are interested in implementing Eq. (1) multiplied through by the density ρ\rho:

ρϕt=ρϕτtρcτϕτ \rho\frac{\partial\phi}{\partial t} = \rho\frac{\partial \phi_{\tau}}{\partial t} - \rho\vec{c}_{\tau} \nabla\phi_{\tau}(2)

In the finite volume setting we compute advective fluxes on faces. This requires constructing divergence terms of the form \nabla \cdot \Box. To do so we rewrite the last term on the right hand side of Eq. (2) using the product rule (dropping the τ\tau subscripts from here on out) as

ρcϕ=(ρcϕ)+ϕ(ρc)-\rho\vec{c}\nabla\phi = -\nabla\cdot\left(\rho\vec{c}\phi\right) + \phi\nabla\cdot\left(\rho\vec{c}\right)

For a constant density ρ\rho can be moved outside of divergence operator leaving the last term on the right hand side as

ρϕc \rho\phi\nabla\cdot\vec{c}(3)

where again c=d/t\vec{c} = \partial\vec{d}/\partial t. INSFVMeshAdvection implements Eq. (3). The advected_quantity parameter specifies ϕ\phi. For energy transport, this would be the specific enthalpy hh. For momentum transport it is the velocity, e.g. the variable parameter itself. The momentum transport version of this object is INSFVMomentumMeshAdvection. It suppresses the advected_quantity parameter in order to advect the variable.

Input Parameters

  • disp_xThe x-displacement. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The x-displacement. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • rhoThe density. This should be constant. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The density. This should be constant. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • variableThe name of the variable that this residual object operates on

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the variable that this residual object operates on

Required Parameters

  • advected_quantityAn optional parameter for a functor describing the advected quantity. If this is not provided, then the 'variable' will be used. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional parameter for a functor describing the advected quantity. If this is not provided, then the 'variable' will be used. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • disp_y0The y-displacement. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    Default:0

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The y-displacement. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • disp_z0The z-displacement. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    Default:0

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The z-displacement. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Optional Parameters

  • absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution

    C++ Type:std::vector<TagName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystemThe tag for the matrices this Kernel should fill

    Default:system

    C++ Type:MultiMooseEnum

    Unit:(no unit assumed)

    Options:nontime, system

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsnontimeThe tag for the vectors this Kernel should fill

    Default:nontime

    C++ Type:MultiMooseEnum

    Unit:(no unit assumed)

    Options:nontime, time

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Tagging Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Unit:(no unit assumed)

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • ghost_layers1The number of layers of elements to ghost.

    Default:1

    C++ Type:unsigned short

    Unit:(no unit assumed)

    Controllable:No

    Description:The number of layers of elements to ghost.

  • use_point_neighborsFalseWhether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Whether to use point neighbors, which introduces additional ghosting to that used for simple face neighbors.

Parallel Ghosting Parameters

References

  1. Bertrand Maury. Characteristics ale method for the unsteady 3d navier-stokes equations with a free surface. International Journal of Computational Fluid Dynamics, 6(3):175–188, 1996.[BibTeX]