NSFVDispersePhaseDragFunctorMaterial

This material computes the linear drag coefficient for a dispersed phase based on the particle Reynolds number RedRe_d. The particle Reynolds number is defined as follows:

Red=ρdddumμm Re_d = \frac{\rho_d d_d \bm{u}_m}{\mu_m}

where:

  • ρd\rho_d is the density of the dispersed phase particles,

  • ddd_d is the characteristic diameter of the dispersed phase particles,

  • um\bm{u}_m is the mixture velocity,

  • μm\mu_m is the mixture viscosity.

Based on this Reynolds number, the linear drag coefficient for the dispersed phase is computed as follows Schiller (1933):

fdrag={1+0.15Re0.678if Re1000,0.0183Reif Re>1000. f_{drag} = \begin{cases} \begin{aligned} &1 + 0.15 Re^{0.678} & \quad &\text{if } Re \leq 1000, \\ &0.0183 Re & \quad &\text{if } Re > 1000. \end{aligned} \end{cases}

Input Parameters

  • muMixture Density. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:Mixture Density. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • rhoContinuous phase density. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:Continuous phase density. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • uThe velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

Required Parameters

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:NONE, ELEMENT, SUBDOMAIN

    Controllable:No

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

  • declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

  • drag_coef_nameDarcy_coefficientName of the scalar friction coefficient defined. The vector coefficient is suffixed with _vec. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    Default:Darcy_coefficient

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:Name of the scalar friction coefficient defined. The vector coefficient is suffixed with _vec. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • execute_onALWAYSThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.

    Default:ALWAYS

    C++ Type:ExecFlagEnum

    Unit:(no unit assumed)

    Options:NONE, INITIAL, LINEAR, NONLINEAR_CONVERGENCE, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.

  • particle_diameter1Diameter of particles in the dispersed phase. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    Default:1

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:Diameter of particles in the dispersed phase. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

  • vThe velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • wThe velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Unit:(no unit assumed)

    Controllable:No

    Description:The seed for the master random number generator

Advanced Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector<OutputName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

Outputs Parameters

References

  1. Links Schiller. A drag coefficient correlation. Zeit. Ver. Deutsch. Ing., 77:318–320, 1933.[BibTeX]