- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Unit:(no unit assumed)
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
CO2FluidProperties
Fluid properties for carbon dioxide (CO2) using the Span & Wagner EOS
Fluid properties for CO are mainly calculated using the Span and Wagner equation of state (Span and Wagner, 1996). This formulation uses density and temperature as the primary variables with which to calculate properties such as density, enthalpy and internal energy. However, the Fluid Properties module uses pressure and temperature in its interface, which is suitable for use in the Porous Flow module. As a result, CO properties are typically calculated by first calculating density iteratively for a given pressure and temperature. This density is then used to calculate the other properties, such as internal energy, directly.
Viscosity is calculated using the formulation presented in Fenghour et al. (1998), while thermal conductivity is taken from Scalabrin et al. (2006).
Dissolution of CO into water is calculated using Henry's law (IAPWS, 2004).
Properties of CO
Property | value |
---|---|
Molar mass | 0.0440098 kg/mol |
Critical temperature | 304.1282 K |
Critical pressure | 7.3773 MPa |
Critical density | 467.6 kg/m |
Triple point temperature | 216.592 K |
Triple point pressure | 0.51795 MPa |
Range of validity
The CO2FluidProperties UserObject is valid for:
216.592 K T 1100 K for p 800 MPa
Input Parameters
- T_initial_guess400Temperature initial guess for Newton Method variable set conversion
Default:400
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Temperature initial guess for Newton Method variable set conversion
- p_initial_guess200000Pressure initial guess for Newton Method variable set conversion
Default:200000
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Pressure initial guess for Newton Method variable set conversion
- tolerance1e-08Tolerance for 2D Newton variable set conversion
Default:1e-08
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Tolerance for 2D Newton variable set conversion
Variable Set Conversions Newton Solve Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- allow_imperfect_jacobiansFalsetrue to allow unimplemented property derivative terms to be set to zero for the AD API
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:true to allow unimplemented property derivative terms to be set to zero for the AD API
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Unit:(no unit assumed)
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- fp_typesingle-phase-fpType of the fluid property object
Default:single-phase-fp
C++ Type:FPType
Unit:(no unit assumed)
Controllable:No
Description:Type of the fluid property object
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
References
- A. Fenghour, W. A. Wakeham, and V. Vesovic.
The viscosity of carbon dioxide.
J. Phys. Chem. Ref. Data, 27:31–44, 1998.[BibTeX]
- IAPWS.
Guidelines on the Henry's constant and vapour liquid distribution constant for gases in H$_2$O and D$_2$O at high temperatures.
Technical Report, IAPWS, 2004.[BibTeX]
- G. Scalabrin, P. Marchi, F. Finezzo, and R. Span.
A reference multiparameter thermal conductivity equation for carbon dioxide with an optimized functional form.
J. Phys. Chem. Ref. Data, 35:1549–1575, 2006.[BibTeX]
- R. Span and W. Wagner.
A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa.
J. Phys. Chem. Ref. Data, 25:1509–1596, 1996.[BibTeX]