HeatSourceFromTotalPower

This component is a heat structure heat source from a total power QQ, provided by a power component. A fraction ff of this total power may be specified, as well as a shape function a(x)a(\mathbf{x}) if a non-uniform distribution is desired.

Usage

The user must supply the name of the heat structure via the parameter "hs" and then the applicable regions of the heat structure using the "regions" parameter. For a 2D heat structure, "regions" may include any set of the heat structure's names parameter. For HeatStructureFromFile3D, "regions" may include any set of blocks existing in the mesh file.

The user is required to specify the name of a power component via the "power" parameter. This power can be scaled with the parameter "power_fraction". If a non-uniform power distribution is desired, the parameter "power_shape_function" may be used to specify a spatial shape function, which gets normalized internally.

Input Parameters

  • hsHeat structure in which to apply heat source

    C++ Type:std::string

    Unit:(no unit assumed)

    Controllable:No

    Description:Heat structure in which to apply heat source

  • powerComponent that provides total power

    C++ Type:std::string

    Unit:(no unit assumed)

    Controllable:No

    Description:Component that provides total power

  • regionsHeat structure regions where heat generation is to be applied

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Heat structure regions where heat generation is to be applied

Required Parameters

  • power_fraction1Fraction of the total power that goes into the heat structure [-]

    Default:1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:Yes

    Description:Fraction of the total power that goes into the heat structure [-]

  • power_shape_functionAxial power shape [-]

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:Axial power shape [-]

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Set the enabled status of the MooseObject.

Advanced Parameters

Formulation

The heat conduction equation is the following: ρcp\pdTt(kT)=q\eqc \rho c_p \pd{T}{t} - \nabla \cdot (k \nabla T) = q''' \eqc where

  • ρ\rho is density,

  • cpc_p is specific heat capacity,

  • kk is thermal conductivity,

  • TT is temperature, and

  • qq''' is a volumetric heat source.

Multiplying by a test function ϕi\phi_i and integrating by parts over the domain Ω\Omega gives \prρcp\pdTt,ϕiΩ+\prkT,ϕiΩkT,ϕinΩ=\prq,ϕiΩ\eqc \pr{\rho c_p \pd{T}{t}, \phi_i}_\Omega + \pr{k \nabla T, \nabla\phi_i}_\Omega - \left\langle k \nabla T, \phi_i\mathbf{n}\right\rangle_{\partial\Omega} = \pr{q''', \phi_i}_\Omega \eqc where Ω\partial\Omega is the boundary of the domain Ω\Omega.

The power density from this component is the following:

q(x)=fQa(x)A~\eqcq'''(\mathbf{x}) = f Q \frac{a(\mathbf{x})}{\tilde{A}} \eqc

where A~\tilde{A} denotes the discrete approximation to

AΩa(x)dΩ\eqcA \equiv \int\limits_\Omega a(\mathbf{x}) d\Omega \eqc

where Ω\Omega is the heat source domain. Note that the discrete integral of the power density over Ω\Omega is exactly equal to fQf Q.