HeatSourceFromPowerDensity

This component is a heat structure heat source from a power density variable qq'''.

Usage

The user must supply the name of the heat structure via the parameter "hs" and then the applicable regions of the heat structure using the "regions" parameter. For a 2D heat structure, "regions" may include any set of the heat structure's names parameter. For HeatStructureFromFile3D, "regions" may include any set of blocks existing in the mesh file.

The user provides a power density variable using the parameter "power_density".

Input Parameters

  • hsHeat structure in which to apply heat source

    C++ Type:std::string

    Unit:(no unit assumed)

    Controllable:No

    Description:Heat structure in which to apply heat source

  • power_densityPower density variable

    C++ Type:VariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:Power density variable

  • regionsHeat structure regions where heat generation is to be applied

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Heat structure regions where heat generation is to be applied

Required Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Set the enabled status of the MooseObject.

Advanced Parameters

Formulation

The heat conduction equation is the following: ρcp\pdTt(kT)=q\eqc \rho c_p \pd{T}{t} - \nabla \cdot (k \nabla T) = q''' \eqc where

  • ρ\rho is density,

  • cpc_p is specific heat capacity,

  • kk is thermal conductivity,

  • TT is temperature, and

  • qq''' is a volumetric heat source.

Multiplying by a test function ϕi\phi_i and integrating by parts over the domain Ω\Omega gives \prρcp\pdTt,ϕiΩ+\prkT,ϕiΩkT,ϕinΩ=\prq,ϕiΩ\eqc \pr{\rho c_p \pd{T}{t}, \phi_i}_\Omega + \pr{k \nabla T, \nabla\phi_i}_\Omega - \left\langle k \nabla T, \phi_i\mathbf{n}\right\rangle_{\partial\Omega} = \pr{q''', \phi_i}_\Omega \eqc where Ω\partial\Omega is the boundary of the domain Ω\Omega.