HSBoundaryHeatFlux

This component is a heat structure boundary that applies a specified heat flux function on the boundary.

Usage

The parameter "hs" specifies the name of the heat structure component, and "boundary" is a list of boundary names on the heat structure where the boundary condition is to be applied.

The parameter "q" gives the incoming boundary heat flux function qq.

The parameter "scale_pp" specifies the name of a post-processor ff that can scale the boundary conditions.

Input Parameters

  • boundaryList of boundary names for which this component applies

    C++ Type:std::vector<BoundaryName>

    Unit:(no unit assumed)

    Controllable:No

    Description:List of boundary names for which this component applies

  • hsHeat structure name

    C++ Type:std::string

    Unit:(no unit assumed)

    Controllable:No

    Description:Heat structure name

  • qHeat flux [W/m^2]

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:Heat flux [W/m^2]

Required Parameters

  • scale1Function by which to scale the boundary condition

    Default:1

    C++ Type:FunctionName

    Unit:(no unit assumed)

    Controllable:No

    Description:Function by which to scale the boundary condition

  • scale_heat_rate_ppTrueIf true, the scaling function is applied to the heat rate post-processor.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:If true, the scaling function is applied to the heat rate post-processor.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Set the enabled status of the MooseObject.

If this component is used with a cylindrical heat structure, the post-processor name_integral is added, which gives the heat rate found by integrating this heat flux over the boundary.

Advanced Parameters

Formulation

The heat conduction equation is the following: ρcp\pdTt(kT)=q\eqc \rho c_p \pd{T}{t} - \nabla \cdot (k \nabla T) = q''' \eqc where

  • ρ\rho is density,

  • cpc_p is specific heat capacity,

  • kk is thermal conductivity,

  • TT is temperature, and

  • qq''' is a volumetric heat source.

Multiplying by a test function ϕi\phi_i and integrating by parts over the domain Ω\Omega gives \prρcp\pdTt,ϕiΩ+\prkT,ϕiΩkT,ϕinΩ=\prq,ϕiΩ\eqc \pr{\rho c_p \pd{T}{t}, \phi_i}_\Omega + \pr{k \nabla T, \nabla\phi_i}_\Omega - \left\langle k \nabla T, \phi_i\mathbf{n}\right\rangle_{\partial\Omega} = \pr{q''', \phi_i}_\Omega \eqc where Ω\partial\Omega is the boundary of the domain Ω\Omega.

For Neumann boundary conditions on the boundary Γ\Gamma, kTnk \nabla T \cdot \mathbf{n} is replaced with a known incoming heat flux function qbq_b:

kTn=qbxΓ\eqpk \nabla T \cdot \mathbf{n} = q_b \qquad \mathbf{x} \in \Gamma \eqp

This incoming boundary flux is the product of the user-specified incoming boundary flux function qq and the optional scaling factor ff:

qb=fq\eqpq_b = f q \eqp